Publications by authors named "Gregory Veber"

Article Synopsis
  • * Synthesis of metallic GNRs has been challenging due to strict structural rules and limited control over the building blocks used in their construction.
  • * A new method is reported that creates regular GNRs with strong metallic properties by incorporating a special superlattice structure, which has been confirmed through theoretical models and experimental techniques.
View Article and Find Full Text PDF

Bottom-up graphene nanoribbons (GNRs) have recently been shown to host nontrivial topological phases. Here, we report the fabrication and characterization of deterministic GNR quantum dots whose orbital character is defined by zero-mode states arising from nontrivial topological interfaces. Topological control was achieved through the synthesis and on-surface assembly of three distinct molecular precursors designed to exhibit structurally derived topological electronic states.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a hybrid bottom-up synthesis technique called Matrix-Assisted Direct (MAD) transfer for creating graphene nanoribbons (GNRs) that combines the advantages of solution-based and on-surface approaches.
  • This method allows for precise control over critical structural properties, translating them effectively into the resulting GNRs.
  • The research showcases the synthesis of unique structures such as chevron-type GNRs and nitrogen-doped armchair GNRs, which could not be achieved using conventional synthesis methods alone.
View Article and Find Full Text PDF

The design and fabrication of robust metallic states in graphene nanoribbons (GNRs) are challenging because lateral quantum confinement and many-electron interactions induce electronic band gaps when graphene is patterned at nanometer length scales. Recent developments in bottom-up synthesis have enabled the design and characterization of atomically precise GNRs, but strategies for realizing GNR metallicity have been elusive. Here we demonstrate a general technique for inducing metallicity in GNRs by inserting a symmetric superlattice of zero-energy modes into otherwise semiconducting GNRs.

View Article and Find Full Text PDF

The incorporation of nanoscale pores into a sheet of graphene allows it to switch from an impermeable semimetal to a semiconducting nanosieve. Nanoporous graphenes are desirable for applications ranging from high-performance semiconductor device channels to atomically thin molecular sieve membranes, and their performance is highly dependent on the periodicity and reproducibility of pores at the atomic level. Achieving precise nanopore topologies in graphene using top-down lithographic approaches has proven to be challenging due to poor structural control at the atomic level.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are molecule-based 2D and 3D materials that possess a wide range of mechanical and electronic properties. We have performed a joint experimental and theoretical study of the electronic structure of boroxine-linked COFs grown under ultrahigh vacuum conditions and characterized using scanning tunneling spectroscopy on Au(111) and hBN/Cu(111) substrates. Our results show that a single hBN layer electronically decouples the COF from the metallic substrate, thus suppressing substrate-induced broadening and revealing new features in the COF electronic local density of states (LDOS).

View Article and Find Full Text PDF

A synthetic route to racemic helicenes via a vinylacetylene mediated gas phase chemistry involving elementary reactions with aryl radicals is presented. In contrast to traditional synthetic routes involving solution chemistry and ionic reaction intermediates, the gas phase synthesis involves a targeted ring annulation involving free radical intermediates. Exploiting the simplest helicene as a benchmark, we show that the gas phase reaction of the 4-phenanthrenyl radical ([CH]) with vinylacetylene (CH) yields [4]-helicene (CH) along with atomic hydrogen via a low-barrier mechanism through a resonance-stabilized free radical intermediate (CH).

View Article and Find Full Text PDF

Topological insulators are an emerging class of materials that host highly robust in-gap surface or interface states while maintaining an insulating bulk. Most advances in this field have focused on topological insulators and related topological crystalline insulators in two dimensions and three dimensions, but more recent theoretical work has predicted the existence of one-dimensional symmetry-protected topological phases in graphene nanoribbons (GNRs). The topological phase of these laterally confined, semiconducting strips of graphene is determined by their width, edge shape and terminating crystallographic unit cell and is characterized by a [Formula: see text] invariant (that is, an index of either 0 or 1, indicating two topological classes-similar to quasi-one-dimensional solitonic systems).

View Article and Find Full Text PDF

The functional integration of atomically defined graphene nanoribbons (GNRs) into single-ribbon electronic device architectures has been limited by access to nondestructive high-resolution imaging techniques that are both compatible with common supports such as Si or Si/SiO wafers and capable of resolving individual ribbons in dilute samples. Conventional techniques such as scanning probe (AFM, STM) or electron microscopy (SEM, TEM) have been restricted by requisite sample preparation techniques that are incompatible with lithographic device fabrication. Here we report the design and synthesis of ultralong (∼10 μm) cove-type GNRs (cGNRs) featuring azide groups along the edges that can serve as a universal handle for late-stage functionalization with terminal alkynes.

View Article and Find Full Text PDF

Regulating the complex environment accounting for the stability, selectivity, and activity of catalytic metal nanoparticle interfaces represents a challenge to heterogeneous catalyst design. Here we demonstrate the intrinsic performance enhancement of a composite material composed of gold nanoparticles (AuNPs) embedded in a bottom-up synthesized graphene nanoribbon (GNR) matrix for the electrocatalytic reduction of CO. Electrochemical studies reveal that the structural and electronic properties of the GNR composite matrix increase the AuNP electrochemically active surface area (ECSA), lower the requisite CO reduction overpotential by hundreds of millivolts (catalytic onset > -0.

View Article and Find Full Text PDF