Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes.
View Article and Find Full Text PDFTranslating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes.
View Article and Find Full Text PDFNanoparticles have emerged as potential transporters of drugs targeting Alzheimer's disease (AD), but their design should consider the blood-brain barrier (BBB) integrity and neuroinflammation of the AD brain. This study presents that aging is a significant factor for the brain localization and retention of nanoparticles, which we engineered to bind with reactive astrocytes and activated microglia. We assembled 200 nm-diameter particles using a block copolymer of poly(lactic-co-glycolic acid) (PLGA) and CD44-binding hyaluronic acid (HA).
View Article and Find Full Text PDFWidefield microscopy of optically thick specimens typically features reduced contrast due to "spatial crosstalk", in which the signal at each point in the field of view is the result of a superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, but comes at the price of photobleaching, chemical, and photo-toxicity.
View Article and Find Full Text PDFHomeostatic plasticity encompasses the mechanisms by which neurons stabilize their synaptic strength and excitability in response to prolonged and destabilizing changes in their network activity. Prolonged activity blockade leads to homeostatic scaling of action potential (AP) firing rate in hippocampal neurons in part by decreased activity of N-Methyl-D-Aspartate receptors and subsequent transcriptional down-regulation of potassium channel genes including which encodes K7.3.
View Article and Find Full Text PDFNeuronal K7/Potassium Voltage-Gated Channel Subfamily Q (KCNQ) potassium channels underlie M-current that potently suppresses repetitive and burst firing of action potentials (APs). They are mostly heterotetramers of K7.2 and K7.
View Article and Find Full Text PDFObjective: STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase. Membrane-bound STEP is the only isoform expressed in hippocampus and cortex. Genetic deletion of STEP enhances excitatory synaptic currents and long-term potentiation in the hippocampus.
View Article and Find Full Text PDFPrimary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. However, the unique behavioral properties of neurons make them challenging to study, with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy-to-assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques.
View Article and Find Full Text PDFPhytochromes (PHYs) are photoreceptor proteins first discovered in plants, where they control a variety of photomorphogenesis events. PHYs as photochromic proteins can reversibly switch between two distinct states: a red light (Pr) and a far-red light (Pfr) absorbing form. The discovery of Bacteriophytochromes (BphPs) in nonphotosynthetic bacteria has opened new frontiers in our understanding of the mechanisms by which these natural photoswitches can control single cell development, although the role of BphPs remains largely unknown.
View Article and Find Full Text PDFPhytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals.
View Article and Find Full Text PDFAdvances in the field of drug discovery have brought an explosion in the quantity of data available to medicinal chemists and other project team members. New strategies and systems are needed to help these scientists to efficiently gather, organize, analyze, annotate, and share data about potential new drug molecules of interest to their project teams. Herein we describe a suite of integrated services and end-user applications that facilitate these activities throughout the medicinal chemistry design cycle.
View Article and Find Full Text PDFThe synthesis and structure-activity relationships (SAR) of a series of benzothiophene piperazine and piperidine urea FAAH inhibitors is described. These compounds inhibit FAAH by covalently modifying the enzyme's active site serine nucleophile. Activity-based protein profiling (ABPP) revealed that these urea inhibitors were completely selective for FAAH relative to other mammalian serine hydrolases.
View Article and Find Full Text PDFA series of 3-imino-2-indolones are the first published, high-affinity antagonists of the galanin GAL3 receptor. One example, 1,3-dihydro-1-phenyl-3-[[3-(trifluoromethyl)phenyl]imino]-2H-indol-2-one (9), was shown to have high affinity for the human GAL3 receptor (Ki=17 nM) and to be highly selective for GAL3 over a broad panel of targets, including GAL1 and GAL2. Compound 9 was also shown to be an antagonist in a human GAL3 receptor functional assay (Kb=29 nM).
View Article and Find Full Text PDFSeveral new, potent dopamine subtype 2 (DA D(2)) active compounds with serotonin subtype 2A (5-HT(2A)) pharmacology are presented. 8-Substituted 3,4-dihydroquinolinones, tetrahydroquinolines, and N-acyl tetrahydroquinolines were evaluated in primary assays. Subtle changes on this novel scaffold translated to large changes in potency and selectivity in vitro.
View Article and Find Full Text PDF