Publications by authors named "Gregory T Zugates"

Background: Noncompressible hemorrhage is a significant cause of preventable death in trauma, with no effective presurgical treatments. We previously described the efficacy and 28-day safety of a self-expanding hemostatic foam in swine models. We hypothesized that the 28-day results would be confirmed at a second site and that results would be consistent over 90 days.

View Article and Find Full Text PDF

The clinical success of gene therapy requires the development of a safe and efficient delivery system for DNA. Cationic polymers are nonviral vectors that can associate electrostatically with plasmid DNA to form nanocomplexes. In some cases, this is sufficient for cellular uptake and transfection, although the precise mechanisms by which polymers facilitate gene delivery remain unclear.

View Article and Find Full Text PDF

Stimulation of CD40 or Toll-Like Receptors (TLR) has potential for tumor immunotherapy. Combinations of CD40 and TLR stimulation can be synergistic, resulting in even stronger dendritic cell (DC) and CD8+ T cell responses. To evaluate such combinations, established B16F10 melanoma tumors were injected every other day X 5 with plasmid DNA encoding a multimeric, soluble form of CD40L (pSP-D-CD40L) either alone or combined with an agonist for TLR1/2 (Pam(3)CSK(4) ), TLR2/6 (FSL-1 and MALP2), TLR3 (polyinosinic-polycytidylic acid, poly(I:C)), TLR4 ( monophosphoryl lipid A, MPL), TLR7 (imiquimod), or TLR9 (Class B CpG phosphorothioate oligodeoxynucleotide, CpG).

View Article and Find Full Text PDF

Non-viral gene delivery systems are promising as they avoid many problems of viral gene therapy by having increased design flexibility, high safety, large DNA cargo capacity, and ease of manufacture. Here, we describe the use of polymeric vectors, in particular biodegradable poly(beta-amino esters) (PBAEs), for non-viral gene delivery. These polymers are able to self-assemble with DNA and form positively charged gene delivery nanoparticles.

View Article and Find Full Text PDF

Highly fluorescent core-shell silica nanoparticles made by the modified Stöber process (C dots) are promising as tools for sensing and imaging subcellular agents and structures but will only be useful if they can be easily delivered to the cytoplasm of the subject cells. This work shows that C dots can be electrostatically coated with cationic polymers, changing their surface charge and enabling them to escape from endosomes and enter the cytoplasm and nucleus. As an example of cellular delivery, we demonstrate that these particles can also be complexed with DNA and mediate and trace DNA delivery and gene expression.

View Article and Find Full Text PDF

Here, we present the synthesis of a library of end-modified poly(beta-amino ester)s and assess their utility as gene delivery vehicles. Polymers were synthesized using a rapid, two-step approach that involves initial preparation of an acrylate-terminated polymer followed by a postpolymerization amine-capping step to generate end-functionalized polymers. Using a highly efficient poly(beta-amino ester), C32, we show that the terminal amine can greatly affect and improve polymer properties relevant to gene delivery.

View Article and Find Full Text PDF

Poly(β-amino ester)s are cationic degradable polymers that have significant potential as gene delivery vectors. Here we present a generalized method to modify poly(β-amino ester)s at the chain ends to improve their delivery performance. End-chain coupling reactions were developed so that polymers could be synthesized and tested in a high-throughput manner, without the need for purification.

View Article and Find Full Text PDF

Poly(beta-amino ester)s are cationic degradable polymers that have significant potential as gene delivery vectors. Here we present a generalized method to modify poly(beta-amino ester)s at the chain ends to improve their delivery performance. End-chain coupling reactions were developed so that polymers could be synthesized and tested in a high-throughput manner, without the need for purification.

View Article and Find Full Text PDF

The safe and efficient delivery of DNA remains the major barrier to the clinical application of non-viral gene therapy. Here, we present novel, biodegradable polymers for gene delivery that are capable of simple graft modification and demonstrate the ability to respond to intracellular conditions. We synthesized poly(beta-amino ester)s using a new amine monomer, 2-(pyridyldithio)-ethylamine (PDA).

View Article and Find Full Text PDF