Background: Ex vivo perfusion of transplant-declined human organs has emerged as a promising platform to study the response of an organ to novel therapeutic strategies. However, to fully realize the capability of this platform for performing translational research in human organ pathophysiology, there is a need for robust assays to assess organ function and disease. State-of-the-art research methods rely on analyses of biopsies taken during perfusion, which both damages the organ and only provides localized information.
View Article and Find Full Text PDFFor decades, transplantation has been a life-saving treatment for those fortunate enough to gain access. Nevertheless, many patients die waiting for an organ and countless more never make it onto the waitlist because of a shortage of donor organs. Concurrently, thousands of donated organs are declined for transplant each year because of concerns about poor outcomes post-transplant.
View Article and Find Full Text PDFAfter cessation of blood flow or similar ischaemic exposures, deleterious molecular cascades commence in mammalian cells, eventually leading to their death. Yet with targeted interventions, these processes can be mitigated or reversed, even minutes or hours post mortem, as also reported in the isolated porcine brain using BrainEx technology. To date, translating single-organ interventions to intact, whole-body applications remains hampered by circulatory and multisystem physiological challenges.
View Article and Find Full Text PDFThe current obesity epidemic has caused a significant decline in the health of our donor population. Organs from obese deceased donors are more prone to ischemia reperfusion injury resulting from organ preservation. As a consequence, these donors are more likely to be discarded under the assumption that nothing can be done to make them viable for transplant.
View Article and Find Full Text PDFDespite the profound shortage of organs available for transplant in the U.S., over 5,000 donated organs were declined for use in 2020.
View Article and Find Full Text PDFPatients undergoing organ transplantation transition from one life-altering issue (organ dysfunction) to a lifelong commitment-immunosuppression. Regimens of immunosuppressive agents (ISAs) come with significant side effects and comorbidities. Recently, the use of nanoparticles (NPs) as a solution to the problems associated with the long-term and systemic use of ISAs in transplantation has emerged.
View Article and Find Full Text PDFIn preclinical research, histological analysis of tissue samples is often limited to qualitative or semiquantitative scoring assessments. The reliability of this analysis can be impaired by the subjectivity of these approaches, even when read by experienced pathologists. Furthermore, the laborious nature of manual image assessments often leads to the analysis being restricted to a relatively small number of images that may not accurately represent the whole sample.
View Article and Find Full Text PDFImmune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood.
View Article and Find Full Text PDFThousands of kidneys from higher-risk donors are discarded annually because of the increased likelihood of complications posttransplant. Given the severe organ shortage, there is a critical need to improve utilization of these organs. To this end, normothermic machine perfusion (NMP) has emerged as a platform for ex vivo assessment and potential repair of marginal organs.
View Article and Find Full Text PDFEndothelial cells play a central role in the process of inflammation. Their biologic relevance, as well as their accessibility to IV injected therapeutics, make them a strong candidate for treatment with molecularly-targeted nanomedicines. Typically, the properties of targeted nanomedicines are first optimized in vitro in cell culture and then in vivo in rodent models.
View Article and Find Full Text PDFAccurate analysis of blood concentration and circulation half-life is an important consideration for any intravenously administered agent in preclinical development or for therapeutic application. However, the currently available tools to measure these parameters are laborious, expensive, and inefficient for handling multiple samples from complex multivariable experiments. Here we describe a robust high-throughput quantitative microscopy-based method to measure the blood concentration and circulation half-life of any fluorescently labeled agent using only a small (2 µL) amount of blood volume, enabling additional end-point measurements to be assessed in the same subject.
View Article and Find Full Text PDFEndosomal escape is a key step for intracellular drug delivery of nucleic acids, but reliable and sensitive methods for its quantitation remain an unmet need. In order to rationally optimize the mRNA transfection efficiency of a library of polymeric materials, we designed a deactivated Renilla luciferase-derived molecular probe whose activity can be restored only in the cytosol. This probe can be coencapsulated with mRNA in the same delivery vehicle, thereby accurately measuring its endosomal escape efficiency.
View Article and Find Full Text PDFFormation of a perfusable microvascular network (μVN) is critical for tissue engineering of solid organs. Stromal cells can support endothelial cell (EC) self-assembly into a μVN, but distinct stromal cell populations may play different roles in this process. Here we describe the differential effects that two widely used stromal cell populations, fibroblasts (FBs) and pericytes (PCs), have on μVN formation.
View Article and Find Full Text PDFTissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells.
View Article and Find Full Text PDFComplement promotes vascular inflammation in transplant organ rejection and connective tissue diseases. Here we identify ZFYVE21 as a complement-induced Rab5 effector that induces non-canonical NF-κB in endothelial cells (EC). In response to membrane attack complexes (MAC), ZFYVE21 is post-translationally stabilized on MAC+Rab5+ endosomes in a Rab5- and PI(3)P-dependent manner.
View Article and Find Full Text PDFDegradable poly(amine-co-ester) (PACE) terpolymers hold tremendous promise for siRNA delivery because these materials can be formulated into delivery vehicles with highly efficient siRNA encapsulation, providing effective knockdown with low toxicity. Here, we demonstrate that PACE nanoparticles (NPs) provide substantial protein knockdown in human embryonic kidney cells (HEK293) and hard-to-transfect primary human umbilical vein endothelial cells (HUVECs). After intravenous administration, NPs of solid PACE (sPACE)-synthesized with high monomer content of a hydrophobic lactone-accumulated in the liver and, to a lesser extent, in other tissues.
View Article and Find Full Text PDFThere is a diverse class of peripheral membrane-binding proteins that specifically bind phosphatidylserine (PS), a lipid that signals apoptosis or cell fusion depending on the membrane context of its presentation. PS-receptors are specialized for particular PS-presenting pathways, indicating that they might be sensitive to the membrane context. In this review, we describe a combination of thermodynamic, structural, and computational techniques that can be used to investigate the mechanisms underlying this sensitivity.
View Article and Find Full Text PDFSuccessful molecular targeting of nanoparticle drug carriers can enhance therapeutic specificity and reduce systemic toxicity. Typically, ligands specific for cognate receptors expressed on the intended target cell type are conjugated to the nanoparticle surface. This approach, often called active targeting, seems to imply that the conjugated ligand imbues the nanoparticle with homing capacity.
View Article and Find Full Text PDFGene delivery is known to be a complicated multi-step biological process. It has been observed that subtle differences in the structure and properties of polymeric materials used for gene delivery can lead to dramatic differences in transfection efficiency. Therefore, screening of properties is pivotal to optimizing the polymer.
View Article and Find Full Text PDFNormothermic machine perfusion (NMP) is a technique that utilizes extracorporeal membrane oxygenation to recondition and repair kidneys at near body temperature prior to transplantation. The application of this new technology has been fueled by a significant increase in the use of the kidneys that were donated after cardiac death, which are more susceptible to ischemic injury. Preliminary results indicate that NMP itself may be able to repair marginal organs prior to transplantation.
View Article and Find Full Text PDFEarly acute rejection of human allografts is mediated by circulating alloreactive host effector memory T cells (TEM). TEM infiltration typically occurs across graft postcapillary venules and involves sequential interactions with graft-derived endothelial cells (ECs) and pericytes (PCs). While the role of ECs in allograft rejection has been extensively studied, contributions of PCs to this process are largely unknown.
View Article and Find Full Text PDFEx vivo normothermic machine perfusion (NMP) is a new clinical strategy to assess and resuscitate organs likely to be declined for transplantation, thereby increasing the number of viable organs available. Short periods of NMP provide a window of opportunity to deliver therapeutics directly to the organ and, in particular, to the vascular endothelial cells (ECs) that constitute the first point of contact with the recipient's immune system. ECs are the primary targets of both ischemia-reperfusion injury and damage from preformed antidonor antibodies, and reduction of perioperative EC injury could have long-term benefits by reducing the intensity of the host's alloimmune response.
View Article and Find Full Text PDFThe dynamic nature of lipid membranes presents significant challenges with respect to understanding the molecular basis of protein/membrane interactions. Consequently, there is relatively little known about the structural mechanisms by which membrane-binding proteins might distinguish subtle variations in lipid membrane composition and/or structure. We have previously developed a multidisciplinary approach that combines molecular dynamics simulation with interfacial x-ray scattering experiments to produce an atomistic model for phosphatidylserine recognition by the immune receptor Tim4.
View Article and Find Full Text PDFHuman endothelial cells are initiators and targets of the rejection response. Pre-operative modification of endothelial cells by small interfering RNA transfection could shape the nature of the host response post-transplantation. Ablation of endothelial cell class II major histocompatibility complex molecules by small interfering RNA targeting of class II transactivator can reduce the capacity of human endothelial cells to recruit and activate alloreactive T cells.
View Article and Find Full Text PDF