Climate change is causing larger wildfires and more extreme precipitation events in many regions. As these ecological disturbances increasingly coincide, they alter lateral fluxes of sediment, organic matter, and nutrients. Here, we report the stream chemistry response of watersheds in a semiarid region of Utah (USA) that were affected by a megafire followed by an extreme precipitation event in October 2018.
View Article and Find Full Text PDFMid-20th century mining in Naabeehó Bináhásdzo (Navajo Nation) polluted soil and groundwater with uranium and arsenic. The Diné and other indigenous residents of this region use groundwater for drinking, livestock, and irrigation, creating a serious environmental health risk. Currently, many individuals and communities on the Navajo Nation must purchase and transport treated water from hours away.
View Article and Find Full Text PDFClimate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon uptake and slow recovery of already nutrient-limited tundra ecosystems.
View Article and Find Full Text PDFStream bacterioplankton communities, a crucial component of aquatic ecosystems and surface water quality, are shaped by environmental selection (i.e., changes in taxa abundance associated with more or less favorable abiotic conditions) and passive dispersal (i.
View Article and Find Full Text PDFThe mechanisms of Hg and dissolved organic matter (DOM) transport from watersheds to streams remain unclear, especially in snowmelt dominated montane systems. We characterized total Hg concentrations and DOM characteristics during snowmelt by weekly and/or monthly sampling at three locations in the upper Provo River, northern Utah, over two water years (2016 and 2017). Total Hg concentrations increased from <1 ng/L during baseflow to >7 ng/L during the snowmelt period (April-June), with decreasing concentrations from upstream to downstream.
View Article and Find Full Text PDFLakes worldwide are impacted by eutrophication and harmful algal or cyanobacteria blooms (HABs) due to excessive nutrients, including legacy P released from sediments in shallow lakes. Utah Lake (northern Utah, USA) is a shallow lake with urban development primarily on the east side of the watershed, providing an opportunity to evaluate HABs in relation to a gradient of legacy sediment P. In this study, we investigated sediment composition and P concentrations in sediment, pore water, and the water column in relation to blooms of harmful cyanobacteria species.
View Article and Find Full Text PDFWe collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters.
View Article and Find Full Text PDFDepth-integrated snow columns were collected at 12 sites across the central Wasatch Mountains, Utah, during March and April 2010 to determine concentrations of trace elements, major anions and cations, and pH. Sample collection was conducted at or near maximum snow accumulation prior to the onset of melt, and included spring dust events driven by southerly pre-frontal winds. Snow samples were melted in the laboratory and subsampled for analyses on filtered (0.
View Article and Find Full Text PDF