Efficient power coupling between on-chip guided and free-space optical modes requires precision spatial mode matching with apodized grating couplers. Yet, grating apodizations are often limited by the minimum feature size of the fabrication approach. This is especially challenging when small feature sizes are required to fabricate gratings at short wavelengths or to achieve weakly scattered light for large-area gratings.
View Article and Find Full Text PDFThe commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics and metasurface optics. In this work, we combine these two technologies using flip-chip bonding and demonstrate an integrated optical architecture for realizing a compact strontium atomic clock.
View Article and Find Full Text PDFMicroresonator frequency combs, or microcombs, have gained wide appeal for their rich nonlinear physics and wide range of applications. Stoichiometric silicon nitride films grown via low-pressure chemical vapor deposition (LPCVD), in particular, are widely used in chip-integrated Kerr microcombs. Critical to such devices is the ability to control the microresonator dispersion, which has contributions from both material refractive index dispersion and geometric confinement.
View Article and Find Full Text PDFAccurate coupling between optical modes at the interface between photonic chips and free space is required for the development of many on-chip devices. This control is critical in quantum technologies where large-diameter beams with designed mode profiles are required. Yet, these designs are often difficult to achieve at shorter wavelengths where fabrication limits the resolution of designed devices.
View Article and Find Full Text PDFThis article introduces in archival form the Nanolithography Toolbox, a platform-independent software package for scripted lithography pattern layout generation. The Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST) developed the Nanolithography Toolbox to help users of the CNST NanoFab design devices with complex curves and aggressive critical dimensions. Using parameterized shapes as building blocks, the Nanolithography Toolbox allows users to rapidly design and layout nanoscale devices of arbitrary complexity through scripting and programming.
View Article and Find Full Text PDF