Brain disorders, in particular mental disorders, might be effectively treated by direct electrical brain stimulation, but clinical progress requires understanding of therapeutic mechanisms. Animal models have not helped, because there are no direct animal models of mental illness. Here, we propose a potential path past this roadblock, by leveraging a common ingredient of most mental disorders: impaired cognitive control.
View Article and Find Full Text PDFThe importance of neuronal glutamate to synaptic transmission throughout the brain illustrates the immense therapeutic potential and safety risks of targeting this system. Astrocytes also release glutamate, the clinical relevance of which is unknown as the range of brain functions reliant on signaling from these cells hasn't been fully established. Here, we investigated system xc- (Sxc), which is a glutamate release mechanism with an rodent expression pattern that is restricted to astrocytes.
View Article and Find Full Text PDFExposure to stressful or traumatic stimuli may alter hypothalamic-pituitary-adrenal (HPA) axis and sympathoadrenal-medullary (SAM) reactivity. This altered reactivity may be a component or cause of mental illnesses. Dissecting these mechanisms requires tools to reliably probe HPA and SAM function, particularly the adrenal component, with temporal precision.
View Article and Find Full Text PDFThe orbitofrontal cortex-ventromedial striatum (OFC-VMS) circuitry is widely believed to drive compulsive behavior. Hyperactivating this pathway in inbred mice produces excessive and persistent self-grooming, which has been considered a model for human compulsivity. We aimed to replicate these findings in outbred rats, where there are few reliable compulsivity models.
View Article and Find Full Text PDF