Fluorescence imaging of live cells allows for the observation of dynamic processes inside cells in real time. Here we describe a strategy to image clathrin-coated vesicle dynamics in a single focal plane at the trans-Golgi network of the yeast Saccharomyces cerevisiae. This method can be readily adapted for live cell imaging of a diverse set of dynamic processes within cells.
View Article and Find Full Text PDFCoenzyme Q (CoQ) is an essential player in the respiratory electron transport chain and is the only lipid-soluble antioxidant synthesized endogenously in mammalian and yeast cells. In humans, genetic mutations, pathologies, certain medical treatments, and aging, result in CoQ deficiencies, which are linked to mitochondrial, cardiovascular, and neurodegenerative diseases. The only strategy available for these patients is CoQ supplementation.
View Article and Find Full Text PDFClathrin coats drive transport vesicle formation from the plasma membrane and in pathways between the trans-Golgi network (TGN) and endosomes. Clathrin adaptors play central roles orchestrating assembly of clathrin coats. The yeast clathrin adaptor-interacting protein Irc6 is an orthologue of human p34, which is mutated in the inherited skin disorder punctate palmoplantar keratoderma type I.
View Article and Find Full Text PDFPhosphoinositides serve as key membrane determinants for assembly of clathrin coat proteins that drive formation of clathrin-coated vesicles. At the -Golgi network (TGN), phosphatidylinositol 4-phosphate (PtdIns4P) plays important roles in recruitment of two major clathrin adaptors, Gga (Golgi-localized, gamma-adaptin ear homology, Arf-binding) proteins and the AP-1 (assembly protein-1) complex. The molecular mechanisms that mediate localization of phosphatidylinositol kinases responsible for synthesis of PtdIns4P at the TGN are not well characterized.
View Article and Find Full Text PDFYeast Vps13 is a member of a conserved protein family that includes human homologues associated with neurodegenerative and developmental disorders. In this issue, De et al. (2017.
View Article and Find Full Text PDFMembrane remodeling by BAR (Bin, Amphiphysin, RVS) domain-containing proteins, such as endophilins and amphiphysins, is integral to the process of endocytosis. However, little is known about the regulation of endocytic BAR domain activity. We have identified an interaction between the yeast Rvs167 N-BAR domain and calmodulin.
View Article and Find Full Text PDFProc Math Phys Eng Sci
October 2015
A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
June 2013
Since the identification of clathrin as a vesicular coat protein, numerous studies have contributed to our understanding of the role of clathrin and clathrin-mediated trafficking pathways in cell function. The budding yeast, Saccharomyces cerevisiae, offers a wealth of highly developed approaches that have been applied to study clathrin-mediated trafficking events, most of which are conserved in mammalian cells. Here we review the function of clathrin and clathrin adaptors in yeast.
View Article and Find Full Text PDFClathrin coat accessory proteins play key roles in transport mediated by clathrin-coated vesicles. Yeast Irc6p and the related mammalian p34 are putative clathrin accessory proteins that interact with clathrin adaptor complexes. We present evidence that Irc6p functions in clathrin-mediated traffic between the trans-Golgi network and endosomes, linking clathrin adaptor complex AP-1 and the Rab GTPase Ypt31p.
View Article and Find Full Text PDFMembrane traffic is an essential process that allows protein and lipid exchange between the endocytic, lysosomal, and secretory compartments. Clathrin-mediated traffic between the trans-Golgi network and endosomes mediates responses to the environment through the sorting of biosynthetic and endocytic protein cargo. Traffic through this pathway is initiated by the controlled assembly of a clathrin-adaptor protein coat on the cytosolic surface of the originating organelle.
View Article and Find Full Text PDFClathrin-coated vesicles mediate endocytosis and transport between the trans-Golgi network (TGN) and endosomes in eukaryotic cells. Clathrin adaptors play central roles in coat assembly, interacting with clathrin, cargo and membranes. Two main types of clathrin adaptor act in TGN-endosome traffic: GGA proteins and the AP-1 complex.
View Article and Find Full Text PDFDynamin family members are large GTPases that assemble into multimeric spirals. These spirals promote membrane fission or fusion, or they inhibit processes such as viral replication. Two new studies by Chappie et al.
View Article and Find Full Text PDFDuring clathrin-mediated endocytosis, adaptor proteins play central roles in coordinating the assembly of clathrin coats and cargo selection. Here we characterize the binding of the yeast endocytic adaptor Sla1p to clathrin through a variant clathrin-binding motif that is negatively regulated by the Sla1p SHD2 domain. The crystal structure of SHD2 identifies the domain as a sterile alpha-motif (SAM) domain and shows a propensity to oligomerize.
View Article and Find Full Text PDFThe evolutionarily conserved adaptor protein-3 (AP-3) complex mediates cargo-selective transport to lysosomes and lysosome-related organelles. To identify proteins that function in AP-3-mediated transport, we performed a genome-wide screen in Saccharomyces cerevisiae for defects in the vacuolar maturation of alkaline phosphatase (ALP), a cargo of the AP-3 pathway. Forty-nine gene deletion strains were identified that accumulated precursor ALP, many with established defects in vacuolar protein transport.
View Article and Find Full Text PDFA variety of Saccharomyces cerevisiae strain libraries allow for systematic analysis of strains bearing gene deletions, repressible genes, overexpressed genes, or modified genes on a genome-wide scale. Here we introduce a method for culturing yeast strains in 96-well format to achieve log-phase growth and a high-throughput technique for generating whole-cell protein extracts from these cultures using sodium dodecyl sulfate and heat lysis. We subsequently describe a procedure to analyze these whole-cell extracts by immunoblotting for alkaline phosphatase and carboxypeptidase yscS to identify strains with defects in protein transport pathways or protein glycosylation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2007
Small molecule inhibitors provide powerful tools to characterize highly dynamic and complex eukaryotic cell pathways such as those mediating membrane traffic. However, a lack of easy and generalizable assays has constrained identification of novel inhibitors despite availability of diverse chemical libraries. Here, we report a facile growth-based strategy in yeast to screen for pathway-specific inhibitors.
View Article and Find Full Text PDFAdaptor proteins play important endocytic roles including recognition of internalization signals in transmembrane cargo. Sla1p serves as the adaptor for uptake of transmembrane proteins containing the NPFxD internalization signal, and is essential for normal functioning of the actin cytoskeleton during endocytosis. The Sla1p homology domain 1 (SHD1) within Sla1p is responsible for recognition of the NPFxD signal.
View Article and Find Full Text PDFThe actin-associated protein Sla1p, through its SHD1 domain, acts as an adaptor for the NPFX(1,2)D endocytic targeting signal in yeast. Here we report that Wsc1p, a cell wall stress sensor, depends on this signal-adaptor pair for endocytosis. Mutation of NPFDD in Wsc1p or expression of Sla1p lacking SHD1 blocked Wsc1p internalization.
View Article and Find Full Text PDFThe AGCVIIIa kinases of Arabidopsis are members of the eukaryotic PKA, PKG, and PKC group of regulatory kinases. One AGCVIIIa kinase, PINOID (PID), plays a fundamental role in the asymmetrical localization of membrane proteins during polar auxin transport. The remaining 16 AGCVIIIa genes have not been associated with single mutant phenotypes, suggesting that the corresponding kinases function redundantly.
View Article and Find Full Text PDFDiscovering target and off-target effects of specific compounds is critical to drug discovery and development. We generated a compendium of "chemical-genetic interaction" profiles by testing the collection of viable yeast haploid deletion mutants for hypersensitivity to 82 compounds and natural product extracts. To cluster compounds with a similar mode-of-action and to reveal insights into the cellular pathways and proteins affected, we applied both a hierarchical clustering and a factorgram method, which allows a gene or compound to be associated with more than one group.
View Article and Find Full Text PDFClathrin adaptors are key factors in clathrin-coated vesicle formation, coupling clathrin to cargo and/or the lipid bilayer. A physically interacting network of three classes of adaptors participate in clathrin-mediated traffic between the trans-Golgi network (TGN) and endosomes: AP-1, Gga proteins, and epsin-like proteins. Here we investigate functional relationships within this network through transport assays and protein localization analysis in living yeast cells.
View Article and Find Full Text PDFAP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1.
View Article and Find Full Text PDFClathrin-coated vesicles (CCVs) play important roles in nutrient uptake, downregulation of signaling receptors, pathogen invasion and biogenesis of endosomes and lysosomes. Although detailed models for endocytic CCV formation have emerged, the process of CCV formation at the Golgi and endosomes has been less clear. Key to endocytic CCV formation are proteins containing related phosphoinositide-binding ENTH and ANTH domains.
View Article and Find Full Text PDF