Publications by authors named "Gregory S Herbert"

Several families of neogastropod mollusks independently evolved the ability to drill through mineralized prey skeletons using their own mineralized feeding teeth, sometimes with shell-softening chemical agents produced by an organ in the foot. Teeth with more durable tooth shapes should extend their use and improve predator performance, but past studies have described only the cusped-side of teeth, mostly overlooking morphologies related to functional interactions between teeth. Here, we describe the three-dimensional morphology of the central drilling tooth (rachidian) from four species of the neogastropod family Muricidae using synchrotron tomographic microscopy and assemble a three-dimensional model of a multitooth series in drilling position for two of them to investigate their dynamic form.

View Article and Find Full Text PDF

The Florida Horse Conch, Triplofusus giganteus, one of the largest marine gastropods in the world, has been intensely exploited by shell collectors, curio dealers, and commercial harvest for over a century and is now in decline. Effective management of horse conch populations requires better data on commercial and recreational harvest intensities but also on the species' intrinsic capacity to recover. Here, we use stable oxygen and carbon isotope sclerochronology to investigate the horse conch's life history, including its maximum life span, growth rates, age at first spawning, and number of lifetime spawning seasons.

View Article and Find Full Text PDF

The Gulf of Mexico (GoM) is home to the world's largest remaining wild oyster fisheries, but baseline surveys needed to assess habitat condition are recent and may represent an already-shifted reference state. Here, we use prehistoric oysters from archaeological middens to show that oyster size, an indicator of habitat function and population resilience, declined prior to the earliest assessments of reef condition in an area of the GoM previously considered pristine. Stable isotope sclerochronlogy reveals extirpation of colossal oysters occurred through truncated life history and slowed growth.

View Article and Find Full Text PDF

Oysters (Crassostrea virginica) were a central component of the Chesapeake Bay ecosystem in 1607 when European settlers established Jamestown, VA, the first permanent English settlement in North America. These estuarine bivalves were an important food resource during the early years of the James Fort (Jamestown) settlement while the colonists were struggling to survive in the face of inadequate supplies and a severe regional drought. Although oyster shells were discarded as trash after the oysters were eaten, the environmental and ecological data recorded in the bivalve geochemistry during shell deposition remain intact over centuries, thereby providing a unique window into conditions during the earliest Jamestown years.

View Article and Find Full Text PDF

Extinction may alter competitive interactions among surviving species, affecting their subsequent recovery and evolution, but these processes remain poorly understood. Analysis of predation traces produced by shell-drilling muricid snails on bivalve prey reveals that species interactions were substantially different before and after a Plio-Pleistocene mass extinction in the western Atlantic. Muricids edge- and wall-drilled their prey in the Pliocene, but Pleistocene and Recent snails attacked prey only through the shell wall.

View Article and Find Full Text PDF