Publications by authors named "Gregory S Harms"

Hard tissue formation patterns and rates reveal details of animal physiology, life history, and environment, but are understudied in reptiles. Here, we use fluorescence labels delivered in vivo and laser confocal scanning microscopy to study tooth and bone formation in a managed group of green iguanas (Iguana iguana, Linné 1758) kept for 1.5 years under experimentally controlled conditions and undergoing several dietary switches.

View Article and Find Full Text PDF

Despite major advances in acute interventions for myocardial infarction (MI), adverse cardiac remodeling and excess fibrosis after MI causing ischemic heart failure (IHF) remain a leading cause of death worldwide. Here we identify a profibrotic coagulation signaling pathway that can be targeted for improved cardiac function following MI with persistent ischemia. Quantitative phosphoproteomics of cardiac tissue revealed an upregulated mitogen-activated protein kinase (MAPK) pathway in human IHF.

View Article and Find Full Text PDF

Microglia are phagocytosis-competent CNS cells comprising a spectrum of subtypes with beneficial and/or detrimental functions in acute and chronic neurodegenerative disorders. The heterogeneity of microglia suggests differences in phagocytic activity and phenotype plasticity between microglia subtypes. To study these issues, primary murine glial cultures were cultivated in the presence of serum, different growth factors and cytokines to obtain M0-like, M1-like, and M2-like microglia as confirmed by morphology, M1/M2 gene marker expression, and nitric oxide assay.

View Article and Find Full Text PDF

Single molecule detection and tracking provides at times the only possible method to observe the interactions of low numbers of biomolecules, inlcuding DNA, receptors and signal mediating proteins in living systems. However, most existing imaging methods do not enable both high sensitivity and non-invasive imaging of large specimens. In this study we report a new setup for selective plane illumination microscopy (SPIM), which enables fast imaging and single molecule tracking with the resolution of confocal microscopy and the optical penetration beyond 300 μm.

View Article and Find Full Text PDF

The calcium signaling protein calmodulin (CaM) interacts with many target proteins inside the cell to regulate a wide range of biological signals. CaM's availability to propagate signals depends on its mobility, which may be regulated by interactions with multiple target proteins. We detected single molecules of CaM labeled with a fluorescent dye and injected into living HEK 293 cells, and we used high-speed, wide-field, single-molecule imaging to track single CaM molecules.

View Article and Find Full Text PDF

Planar illumination imaging allows for illumination of the focal plane orthogonal to the imaging axis in various light forms and is advantageous for high optical sectioning, high imaging speed, low light exposure, and inherently deeper imaging penetration into small organisms and tissue sections. The drawback of the technique is the low inherent resolution, which can be overcome by the incorporation of a dual-sheet stimulated emission depletion (STED) beam to the planar illumination excitation. Our initiative is the implementation of STED into the planar illumination microscope for enhanced resolution.

View Article and Find Full Text PDF

The RAF family of kinases mediates RAS signaling, and RAF inhibitors can be effective for treating tumors with BRAF(V600E) mutant protein. However, RAF inhibitors paradoxically accelerate metastasis in RAS-mutant tumors and become ineffective in BRAF(V600E) tumors because of reactivation of downstream mitogen-activated protein kinase (MAPK) signaling. We found that the RAF isoform ARAF has an obligatory role in promoting MAPK activity and cell migration in a cell type-dependent manner.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown.

View Article and Find Full Text PDF

In pemphigus vulgaris, a life-threatening autoimmune skin disease, epidermal blisters are caused by autoantibodies primarily targeting desmosomal cadherins desmoglein 3 (DSG3) and DSG1, leading to loss of keratinocyte cohesion. Due to limited insights into disease pathogenesis, current therapy relies primarily on nonspecific long-term immunosuppression. Both direct inhibition of DSG transinteraction and altered intracellular signaling by p38 MAPK likely contribute to the loss of cell adhesion.

View Article and Find Full Text PDF

Understanding the spatiotemporal changes of cellular and molecular events within an organism is crucial to elucidate the complex immune processes involved in infections, autoimmune disorders, transplantation, and neoplastic transformation and metastasis. Here we introduce a novel multicolor light sheet fluorescence microscopy (LSFM) approach for deciphering immune processes in large tissue specimens on a single-cell level in 3 dimensions. We combined and optimized antibody penetration, tissue clearing, and triple-color illumination to create a method for analyzing intact mouse and human tissues.

View Article and Find Full Text PDF

Bone (or body) morphogenetic proteins (BMPs) belong to the TGFβ superfamily and are crucial for embryonic patterning and organogenesis as well as for adult tissue homeostasis and repair. Activation of BMP receptors by their ligands leads to induction of several signaling cascades. Using fluorescence recovery after photobleaching, FRET, and single particle tracking microscopy, we demonstrate that BMP receptor type I and II (BMPRI and BMPRII) have distinct lateral mobility properties within the plasma membrane, which is mandatory for their involvement in different signaling pathways.

View Article and Find Full Text PDF

Background: Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana.

View Article and Find Full Text PDF

Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well-studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known.

View Article and Find Full Text PDF

Single molecule detection and tracking provides at times the only possible method to observe the interactions of low numbers of biomolecules, inlcuding DNA, receptors and signal mediating proteins in living systems. However, most existing imaging methods do not enable both high sensitivity and non-invasive imaging of large specimens. In this study we report a new setup for selective plane illumination microscopy (SPIM), which enables fast imaging and single molecule tracking with the resolution of confocal microscopy and the optical penetration beyond 300 μm.

View Article and Find Full Text PDF

We demonstrate the first, to our knowledge, integration of stimulated emission depletion (STED) with selective plane illumination microscopy (SPIM). Using this method, we were able to obtain up to 60% improvements in axial resolution with lateral resolution enhancements in control samples and zebrafish embryos. The integrated STED-SPIM method combines the advantages of SPIM with the resolution enhancement of STED, and thus provides a method for fast, high-resolution imaging with >100 μm deep penetration into biological tissue.

View Article and Find Full Text PDF

Upconverting materials are capable of absorbing near-infrared light and converting it into short-wavelength luminescence. The efficiency of this remarkable effect is highly temperature dependent and thus can be used for temperature determination (thermometry) on a nanometer scale. All the upconverting materials discovered so far display several (mainly two) narrow emission bands, each of which has its own temperature dependence.

View Article and Find Full Text PDF

Evidence exists that cAMP stabilizes the endothelial barrier, in part via activation of the small GTPase Rac1. However, despite the high medical relevance of this signaling pathway, the mechanistic effects on intercellular contacts on the ultrastructural level are largely unknown. In microvascular endothelial cell monolayers, in which increased cAMP strengthened barrier properties, similar to intact microvessels in vivo, both forskolin and rolipram (F/R) to increase cAMP and 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphorothioate (O-Me-cAMP) to stimulate exchange protein directly activated by cAMP/Ras proximate-1 (EPac/Rap 1) signaling enhanced transendothelial electrical resistance and induced activation of Rac1.

View Article and Find Full Text PDF

The fluorescein arsenical hairpin binder (FlAsH) shows much promise to determine the relative orientations of protein regions and structures even in living cells and in the plasma membrane. In this study, we characterized FlAsH's photophysical properties by steady-state anisotropy and time-resolved single photon counting for further applications with G-protein coupled receptors. We find that FlAsH has a relatively high initial anisotropy of 0.

View Article and Find Full Text PDF

Here we describe a labeling technique for the covalent linkage of quantum dots to transmembrane receptors for single-molecule tracking. Our method combines the acyl carrier protein (ACP) technique with coenzyme A (CoA)-functionalized quantum dots to covalently attach quantum dots to ACP fusions of receptor proteins. The advantages of this approach include: (i) the use of a smaller attachment linker than in many other quantum dot-labeling systems; (ii) the ability to achieve a reliable 1:1 fluorophore-to-receptor labeling stoichiometry; (iii) the specificity of the method; and (iv) the covalent nature of the quantum dot linkage.

View Article and Find Full Text PDF

In the human autoimmune blistering skin disease pemphigus vulgaris autoantibodies (PV-IgG), which are mainly directed against keratinocyte cell adhesion molecules desmoglein (Dsg) 3 and Dsg1, cause keratinocyte cell dissociation (acantholysis). Recent studies reported that loss of keratinocyte cell adhesion was accompanied by profound alterations of the actin cytoskeleton. Nevertheless, the relevance of actin reorganization in this process is unclear at present.

View Article and Find Full Text PDF

Oncogenic stress induces expression of the alternate reading frame (Arf) tumor suppressor protein. Arf then stabilizes p53, which leads to cell cycle arrest or apoptosis. The mechanisms that distinguish both outcomes are incompletely understood.

View Article and Find Full Text PDF

Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 microm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo.

View Article and Find Full Text PDF

Prion diseases are fatal neurodegenerative disorders causing motor dysfunctions, dementia and neuropathological changes such as spongiosis, astroglyosis and neuronal loss. The chain of events leading to the clinical disease and the role of distinct brain areas are still poorly understood. The role of nervous system integrity and axonal properties in prion pathology are still elusive.

View Article and Find Full Text PDF

The functional imaging of neuronal circuits of the central nervous system is crucial for phenotype screenings or investigations of defects in neurodegenerative disorders. Current techniques yield either low penetration depth, yield poor resolution, or are restricted by the age of the animals. Here, we present a novel ultramicroscopy protocol for fluorescence imaging and three-dimensional reconstruction in the central nervous system of adult mice.

View Article and Find Full Text PDF

Inhibitor of apoptosis proteins (IAP) are evolutionarily conserved anti-apoptotic regulators. C-RAF protein kinase is a direct RAS effector protein, which initiates the classical mitogen-activated protein kinase (MAPK) cascade. This signalling cascade mediates diverse biological functions, such as cell growth, proliferation, migration, differentiation and survival.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc2pcegpqpfp1kjtjm61hi17t0fbuaqcb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once