Publications by authors named "Gregory S Eakins"

Single-frequency ion parking, a useful technique in electrospray mass spectrometry (ESI-MS), involves gas-phase charge-reduction ion/ion reactions in an electrodynamic ion trap in conjunction with the application of a supplementary oscillatory voltage to selectively inhibit the reaction rate of an ion of interest. The ion parking process provides a means for limiting the extent of charge reduction in a controlled fashion and allows for ions distributed over a range of charge states to be concentrated into fewer charge states (a single charge state under optimal conditions). As charge reduction inherently leads to an increase in the mass-to-charge () ratio of the ions, it is important that the means for storing and analyzing ions be able to accommodate ions of high ratios.

View Article and Find Full Text PDF

Native mass spectrometry (MS) focuses on measuring the masses of large biomolecular complexes and probing their structures. Large biomolecular complexes are readily introduced into mass spectrometers as gas-phase ions using electrospray ionization (ESI); however, the ions tend to be heavily adducted with solvent and salts, which leads to mass measurement errors. Various solution clean-up approaches can reduce the degree of adduction prior to introduction to the mass spectrometer.

View Article and Find Full Text PDF

To better probe large biomolecular complexes, developments in mass spectrometry (MS) have focused on improving technologies used to generate, transmit, and measure high ions. The additional tandem-MS (MS) capabilities of ion trap mass spectrometers (ITMS) facilitate experiments that facilitate probing complex biomolecular ions. In particular, charge reduction using gas-phase ion/ion reactions increase separation of charge states generated via electrospray ionization (ESI), which increases confidence in charge state assignments and therefore masses determined from the observed charge states.

View Article and Find Full Text PDF

Simultaneous isolation of ions of disparate mass-to-charge (/) ratios is demonstrated via appropriately timed pulsing of entrance and exit ion mirrors in an electrostatic linear ion trap (ELIT) mass spectrometer. Manipulation of the voltages of the entrance and exit mirrors, referred to as "mirror switching", has been demonstrated as a method in which ions can be both captured and isolated. High resolution isolation (>35 000) was previously demonstrated by selective gating of trapping electrodes to avoid ion lapping while closely spaced ions could continue to separate [ Johnson et al.

View Article and Find Full Text PDF

Ion isolation was achieved via selective pulsing of the entrance and exit ion mirrors in an electrostatic linear ion trap mass spectrometer (ELIT). Mirror switching has been described previously as a method for capturing injected ions in ELIT devices. After ion trapping, mirror switching can be used as a method for ion isolation of successively narrower ranges of mass-to-charge (/) ratio.

View Article and Find Full Text PDF

Quadrupole ion traps (QITs) are versatile platforms for performing experiments with gas-phase ions due to their abilities to store ions of both polarities and to conduct MS experiments. The QIT is particularly useful as a reaction cell for ion/ion reactions. In the case of an ion/ion reaction experiment in a QIT, multiply charged reactant ions may initially be of relatively low m/z (e.

View Article and Find Full Text PDF

Triboluminescence (TL) is shown to enable selective detection of trace crystallinity within nominally amorphous solid dispersions (ASDs). ASDs are increasingly used for the preparation of pharmaceutical formulations, the physical stability of which can be negatively impacted by trace crystallinity introduced during manufacturing or storage. In the present study, TL measurements of a model ASD consisting of griseofulvin in polyethylene glycol produced limits of detection of 140 ppm.

View Article and Find Full Text PDF