Objective: Cooling to electrocerebral inactivity (ECI) by electroencephalography (EEG) remains the gold standard to maximize cerebral and systemic organ protection during deep hypothermic circulatory arrest (DHCA). We sought to determine predictors of ECI to help guide cooling protocols when EEG monitoring is unavailable.
Methods: Between July 2005 and July 2011, 396 patients underwent thoracic aortic operation with DHCA; EEG monitoring was used in 325 (82%) of these patients to guide the cooling strategy, and constituted the study cohort.
Two patients are presented with right atrial tumors, who were considered to be at risk for tumor thrombus migration down the venous line into the cardiopulmonary bypass (CPB) circuit during surgical excision, which may lead to compromised or interrupted venous drainage. An arterial line filter was placed in the venous line to capture any material that might become dislodged and embolize into the circuit. Vacuum-assisted venous drainage, at approximately -50 mmHg, was used to overcome any resistance caused by the filter in the venous line.
View Article and Find Full Text PDF