Germline disease-causing variants are generally more spatially clustered in protein 3-dimensional structures than benign variants. Motivated by this tendency, we develop a fast and powerful protein-structure-based scan (PSCAN) approach for evaluating gene-level associations with complex disease and detecting signal variants. We validate PSCAN's performance on synthetic data and two real data sets for lipid traits and Alzheimer's disease.
View Article and Find Full Text PDFImmunity genes have repeatedly experienced natural selection during mammalian evolution. Galectins are carbohydrate-binding proteins that regulate diverse immune responses, including maternal-fetal immune tolerance in placental pregnancy. Seven human galectins, four conserved across vertebrates and three specific to primates, are involved in placental development.
View Article and Find Full Text PDFWe report a gatekeeper mutation in a patient with -mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3, also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response.
View Article and Find Full Text PDFStructural characterization of the human Y4 receptor (hY4R) interaction with human pancreatic polypeptide (hPP) is crucial, not only for understanding its biological function but also for testing treatment strategies for obesity that target this interaction. Here, the interaction of receptor mutants with pancreatic polypeptide analogs was studied through double-cycle mutagenesis. To guide mutagenesis and interpret results, a three-dimensional comparative model of the hY4R-hPP complex was constructed based on all available class A G protein-coupled receptor crystal structures and refined using experimental data.
View Article and Find Full Text PDFWe report a genome-wide RNA interference (RNAi) screen for Suppressors of Clozapine-induced Larval Arrest (scla genes) in Caenorhabditis elegans, the first genetic suppressor screen for antipsychotic drug (APD) targets in an animal. The screen identifies 40 suppressors, including the α-like nicotinic acetylcholine receptor (nAChR) homolog acr-7. We validate the requirement for acr-7 by showing that acr-7 knockout suppresses clozapine-induced larval arrest and that expression of a full-length translational GFP fusion construct rescues this phenotype.
View Article and Find Full Text PDFClozapine has superior and unique effects as an antipsychotic agent, but the mediators of these effects are not known. We studied behavioral and developmental effects of clozapine in Caenorhabditis elegans, as a model system to identify previously undiscovered mechanisms of drug action. Clozapine induced early larval arrest, a phenotype that was also seen with the clozapine metabolite N-desmethyl clozapine but not with any other typical or atypical antipsychotic drug tested.
View Article and Find Full Text PDF