J Enzyme Inhib Med Chem
December 2024
The HECT E3 ubiquitin ligases 1 (WWP1) and 2 (WWP2) are responsible for the ubiquitin-mediated degradation of key tumour suppressor proteins and are dysregulated in various cancers and diseases. Here we expand their limited inhibitor space by identification of NSC-217913 displaying a WWP1 IC of 158.3 µM (95% CI = 128.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
January 2024
-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with - or -nucleophiles under physiological conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions.
View Article and Find Full Text PDFTargeting protein-protein interactions (PPI) is a key focus in the development of new and emerging small-molecule therapeutics. Shallow interacting surfaces can render PPI targeting notoriously difficult. This leaves many therapeutically captivating targets 'undruggable'.
View Article and Find Full Text PDFWe have screened small molecule libraries specifically for inhibitors that target WWP2, an E3 ubiquitin ligase associated with tumour outgrowth and spread. Selected hits demonstrated dose-dependent WWP2 inhibition, low micromolar IC50 values, and inhibition of PTEN substrate-specific ubiquitination. Binding to WWP2 was confirmed by ligand-based NMR spectroscopy.
View Article and Find Full Text PDF