Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury.
View Article and Find Full Text PDFAcute kidney injury (AKI) is a common condition associated with significant morbidity, mortality, and cost. Injured kidney tissue can regenerate after many forms of AKI. However, there are no treatments in routine clinical practice to encourage recovery.
View Article and Find Full Text PDFChronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis.
View Article and Find Full Text PDFAcute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury.
View Article and Find Full Text PDFUnlabelled: Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI.
View Article and Find Full Text PDFRecovery from acute kidney injury can vary widely in patients and in animal models. Immunofluorescence staining can provide spatial information about heterogeneous injury responses, but often only a fraction of stained tissue is analyzed. Deep learning can expand analysis to larger areas and sample numbers by substituting for time-intensive manual or semi-automated quantification techniques.
View Article and Find Full Text PDFThe Pax family of developmental control genes are frequently deregulated in human disease. In the kidney, Pax2 is expressed in developing nephrons but not in adult proximal and distal tubules, whereas polycystic kidney epithelia or renal cell carcinoma continues to express high levels. Pax2 reduction in mice or cell culture can slow proliferation of cystic epithelial cells or renal cancer cells.
View Article and Find Full Text PDFThe vertebrate eye anlage grows out of the brain and folds into bilayered optic cups. The eye is patterned along multiple axes, precisely controlled by genetic programs, to delineate neural retina, pigment epithelium, and optic stalk tissues. Pax genes encode developmental regulators of key morphogenetic events, with Pax2 being essential for interpreting inductive signals, including in the eye.
View Article and Find Full Text PDFBackground: As the glomerular filtrate passes through the nephron and into the renal medulla, electrolytes, water, and urea are reabsorbed through the concerted actions of solute carrier channels and aquaporins at various positions along the nephron and in the outer and inner medulla. Proliferating stem cells expressing the nuclear transcription factor Pax2 give rise to renal epithelial cells. Pax2 expression ends once the epithelial cells differentiate into mature proximal and distal tubules, whereas expression of the related Pax8 protein continues.
View Article and Find Full Text PDFA terminally differentiated cellular phenotype is thought to be maintained, at least in part, by both active and repressive histone marks. However, it is unclear whether regenerating cells after injury need to replicate such epigenetic marks to recover. To test whether renal epithelial cell regeneration is dependent on histone H3K4 methylation, we generated a mouse model that deleted the Paxip1 gene in mature renal proximal tubules.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling is critical in renal development and disease. In animal models of chronic kidney disease (CKD), re-activation of BMP signaling is reported to be protective by promoting renal repair and regeneration. Clinical use of recombinant BMPs, however, requires harmful doses to achieve efficacy and is costly because of BMPs' complex synthesis.
View Article and Find Full Text PDFBackground: Renal interstitial fibrosis results from activation and proliferation of fibroblasts to myofibroblasts, secretion and accumulation of extracellular matrix, and displacement of normal renal tubules. In contrast to chronic renal disease, acute injury may be repaired, a process that includes a decrease in the number of myofibroblasts in the interstitium and degradation of the accumulated extracellular matrix, leaving little evidence of prior injury.
Methods: To investigate whether activated fibroblasts demonstrate changes in gene expression that correspond with regression after acute injury but are not observed in chronic models of fibrosis, we used microarrays to analyze gene expression patterns among fibroblast populations at different stages of injury or repair.
Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program.
View Article and Find Full Text PDFThe in vivo niche and basic cellular properties of nephron progenitors are poorly described. Here we studied the cellular organization and function of the MAPK/ERK pathway in nephron progenitors. Live-imaging of ERK activity by a Förster resonance energy transfer biosensor revealed a dynamic activation pattern in progenitors, whereas differentiating precursors exhibited sustained activity.
View Article and Find Full Text PDFPax genes encode developmental regulators that are expressed in a variety of tissues and control critical events in morphogenesis. In the kidney, Pax2 and Pax8 are expressed in embryonic development and in specific renal diseases associated with aberrant epithelial cell proliferation. Prior genetic and cell biological studies suggest that reducing the activity of Pax proteins in renal cancer or in polycystic kidney disease can slow the progression of these conditions.
View Article and Find Full Text PDFProducing hair cells of the inner ear is the major goal of ongoing research that combines advances in developmental and stem cell biology. The recent advent of an inner ear organoid protocol-resulting in three-dimensional stem cell-derived tissues resembling vestibular sensory epithelia-has sparked interest in applications such as regeneration, drug discovery, and disease modeling. In this study, we adapted this protocol for a novel mouse embryonic stem cell line with a fluorescent reporter for Pax2 expression.
View Article and Find Full Text PDFObesity and its associated complications such as insulin resistance and non-alcoholic fatty liver disease are reaching epidemic proportions. In mice, the TGF-β superfamily is implicated in the regulation of white and brown adipose tissue differentiation. The kielin/chordin-like protein (KCP) is a secreted regulator of the TGF-β superfamily pathways that can inhibit both TGF-β and activin signals while enhancing bone morphogenetic protein (BMP) signaling.
View Article and Find Full Text PDFThe Pax gene family encodes DNA binding transcription factors that control critical steps in embryonic development and differentiation of specific cell lineages. Often, Pax proteins are re-expressed or ectopically expressed in cancer and other diseases of abnormal proliferation, making them attractive targets for tissue specific inhibition by small molecules. In this report, we used a homology model of the Pax2 paired domain and a virtual screen to identify small molecules that can inhibit binding of the paired domain to DNA and Pax2 mediated transcription activation.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2016
Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease and is increasing with the rising rate of obesity in the developed world. Signaling pathways known to influence the rate of lipid deposition in liver, known as hepatic steatosis, include the transforming growth factor (TGF) superfamily, which function through the SMAD second messengers. The kielin/chordin-like protein (KCP) is a large secreted protein that can enhance bone morphogenetic protein signaling while suppressing TGF-β signaling in cells and in genetically modified mice.
View Article and Find Full Text PDFPax genes encode developmental regulatory proteins that specify cell lineages and tissues in metazoans. Upon binding to DNA through the conserved paired domain, Pax proteins can recruit both activating and repressing complexes that imprint distinct patterns of histone methylation associated with either gene activation or silencing. How the switch from Pax-mediated activation to repression is regulated remains poorly understood.
View Article and Find Full Text PDFActivation of the Pax2 gene marks the intermediate mesoderm shortly after gastrulation, as the mesoderm becomes compartmentalized into paraxial, intermediate, and lateral plate. Using an EGFP knock-in allele of Pax2 to identify and sort cells of the intermediate mesodermal lineage, we compared gene expression patterns in EGFP positive cells that were heterozygous or homozygous null for Pax2. Thus, we identified critical regulators of intermediate mesoderm and kidney development whose expression depended on Pax2 function.
View Article and Find Full Text PDFThe study of epigenetics is intimately linked and inseparable from developmental biology. Many of the genes that imprint epigenetic information on chromatin function during the specification of cell lineages in the developing embryo. These include the histone methyltransferases and their cofactors of the Polycomb and Trithorax gene families.
View Article and Find Full Text PDFFirst identified in Drosophila, the Crumbs (Crb) proteins are important in epithelial polarity, apical membrane formation, and tight junction (TJ) assembly. The conserved Crb intracellular region includes a FERM (band 4.1/ezrin/radixin/moesin) binding domain (FBD) whose mammalian binding partners are not well understood and a PDZ binding motif that interacts with mammalian Pals1 (protein associated with lin seven) (also known as MPP5).
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2013
Groucho related genes encode transcriptional repressor proteins critical for normal developmental processes. The bone morphogenetic proteins belong to the transforming growth factor-β (TGF-β) superfamily and play important signaling roles in development and disease. However, the regulation of BMP signaling, especially within cells, is largely unknown.
View Article and Find Full Text PDFThe development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions have been well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed.
View Article and Find Full Text PDF