Terahertz (THz) plasma oscillations represent a potential path to implement ultrafast electronic devices and circuits. Here, we present an approach to generate on-chip THz signals that relies on plasma-wave stabilization in nanoscale transistors with specific structural asymmetry. A hydrodynamic treatment shows how the transistor asymmetry supports plasma-wave amplification, giving rise to pronounced negative differential conductance (NDC).
View Article and Find Full Text PDFWe present an electrically tunable terahertz two dimensional plasmonic interferometer with an integrated detection element that down converts the terahertz fields to a DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field functioning as the local oscillator. Plasmonic interferometers with two independently tuned paths are studied.
View Article and Find Full Text PDF