Publications by authors named "Gregory Potter"

(RR) is a plant whose bioactive components may function as adaptogens, thereby increasing resistance to stress and improving overall resilience. Some of these effects may influence exercise performance and adaptations. Based on studies of rodents, potential mechanisms for the ergogenic effects of RR include modulation of energy substrate stores and use, reductions in fatigue and muscle damage and altered antioxidant activity.

View Article and Find Full Text PDF

Shift work is commonplace in modern societies, and shift workers are predisposed to the development of numerous chronic diseases. Disruptions to the circadian systems of shift workers are considered important contributors to the biological dysfunction these people frequently experience. Because of this, understanding how to alter shift work and zeitgeber (time cue) schedules to enhance circadian system function is likely to be key to improving the health of shift workers.

View Article and Find Full Text PDF

The Oxford WebQ is an online 24-hour dietary questionnaire that is appropriate for repeated administration in large-scale prospective studies, including the UK Biobank study and the Million Women Study. We compared the performance of the Oxford WebQ and a traditional interviewer-administered multiple-pass 24-hour dietary recall against biomarkers for protein, potassium, and total sugar intake and total energy expenditure estimated by accelerometry. We recruited 160 participants in London, United Kingdom, between 2014 and 2016 and measured their biomarker levels at 3 nonconsecutive time points.

View Article and Find Full Text PDF

Background: Online dietary assessment tools can reduce administrative costs and facilitate repeated dietary assessment during follow-up in large-scale studies. However, information on bias due to measurement error of such tools is limited. We developed an online 24-h recall (myfood24) and compared its performance with a traditional interviewer-administered multiple-pass 24-h recall, assessing both against biomarkers.

View Article and Find Full Text PDF

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs.

View Article and Find Full Text PDF

Ever more evidence associates short sleep with increased risk of metabolic diseases such as obesity, which may be related to a predisposition to non-homeostatic eating. Few studies have concurrently determined associations between sleep duration and objective measures of metabolic health as well as sleep duration and diet, however. We therefore analyzed associations between sleep duration, diet and metabolic health markers in UK adults, assessing associations between sleep duration and 1) adiposity, 2) selected metabolic health markers and 3) diet, using National Diet and Nutrition Survey data.

View Article and Find Full Text PDF

Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption.

View Article and Find Full Text PDF

Neuroinflammation, activation of innate immune components of the nervous system followed by an adaptive immune response, is observed in most leukodystrophies and coincides with white matter pathology, disease progression, and morbidity. Despite this, there is a major gap in our knowledge of the contribution of the immune system to disease phenotype. Inflammation in Krabbe's disease has been considered a secondary effect, resulting from cell-autonomous oligodendroglial cell death or myelin loss resulting from psychosine accumulation.

View Article and Find Full Text PDF

The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues.

View Article and Find Full Text PDF

Cellular proliferation requires the formation of new membranes. It is often assumed that the lipids needed for these membranes are synthesized mostly de novo. Here, we show that proliferating fibroblasts prefer to take up palmitate from the extracellular environment over synthesizing it de novo.

View Article and Find Full Text PDF

Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation from telencephalic multipotent precursors are poorly understood.

View Article and Find Full Text PDF

Krabbe disease is a devastating pediatric leukodystrophy caused by mutations in the galactocerebrosidase (GALC) gene. A significant subset of the infantile form of the disease is due to missense mutations that result in aberrant protein production. The currently used mouse model, twitcher, has a nonsense mutation not found in Krabbe patients, although it is similar to the human 30 kb deletion in abrogating GALC expression.

View Article and Find Full Text PDF

We labeled soybean (Glycine max) leaves with 200 and 600 ppm (13) CO(2) spiked with (11) CO(2) and examined the effects of light intensity and water stress on metabolism by using a combination of direct positron imaging and solid-state (13) C nuclear magnetic resonance (NMR) of the same leaf. We first made 60-min movies of the transport of photosynthetically assimilated (11) C labels. The positron imaging identified zones or patches within which variations in metabolism could be probed later by NMR.

View Article and Find Full Text PDF

Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood.

View Article and Find Full Text PDF

Heterozygous loss-of-function mutations in the brain sodium channel Na(V)1.1 cause Dravet syndrome (DS), a pharmacoresistant infantile-onset epilepsy syndrome with comorbidities of cognitive impairment and premature death. Previous studies using a mouse model of DS revealed reduced sodium currents and impaired excitability in GABAergic interneurons in the hippocampus, leading to the hypothesis that impaired excitability of GABAergic inhibitory neurons is the cause of epilepsy and premature death in DS.

View Article and Find Full Text PDF

Background: Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear.

Methodology And Principal Findings: We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)--a light-driven chloride pump.

View Article and Find Full Text PDF

Inhibitory interneurons regulate the responses of cortical circuits. In auditory cortical areas, inhibition from these neurons narrows spectral tuning and shapes response dynamics. Acute disruptions of inhibition expand spectral receptive fields.

View Article and Find Full Text PDF

Lhx6 and Lhx8 transcription factor coexpression in early-born MGE neurons is required to induce neuronal Shh expression. We provide evidence that these transcription factors regulate expression of a Shh enhancer in MGE neurons. Lhx6 and Lhx8 are also required to prevent Nkx2-1 expression in a subset of pallial interneurons.

View Article and Find Full Text PDF

Oligodendrocytes are the primary source of myelin in the adult central nervous system (CNS), and their dysfunction or loss underlies several diseases of both children and adults. Dysmyelinating and demyelinating diseases are thus attractive targets for cell-based strategies since replacement of a single presumably homogeneous cell type has the potential to restore functional levels of myelin. To understand the obstacles that cell-replacement therapy might face, we review oligodendrocyte biology and emphasize aspects of oligodendrocyte development that will need to be recapitulated by exogenously transplanted cells, including migration from the site of transplantation, axon recognition, terminal differentiation, axon wrapping, and myelin production and maintenance.

View Article and Find Full Text PDF

The bHLH transcription factors that regulate early development of the central nervous system can generally be classified as either antineural or proneural. Initial expression of antineural factors prevents cell cycle exit and thereby expands the pool of neural progenitors. Subsequent (and typically transient) expression of proneural factors promotes cell cycle exit, subtype specification, and differentiation.

View Article and Find Full Text PDF

CXCL12/CXCR4 signaling is critical for cortical interneuron migration and their final laminar distribution. No information is yet available on CXCR7, a newly defined CXCL12 receptor. Here we demonstrated that CXCR7 regulated interneuron migration autonomously, as well as nonautonomously through its expression in immature projection neurons.

View Article and Find Full Text PDF

We have used a rotational-echo adiabatic-passage double-resonance (13)C{(17)O} solid-state NMR experiment to prove that the glycine produced in the oxygenase reaction of ribulose bisphosphate carboxylase-oxygenase is incorporated exclusively into protein (or protein precursors) of intact, water-stressed soybean leaves exposed to (13)CO(2) and (17)O(2). The water stress increased stomatal resistance and decreased gas exchange so that the Calvin cycle in the leaf chloroplasts was no more than 35% (13)C isotopically enriched. Labeled O(2) levels were sufficient, however, to increase the (17)O isotopic concentration of oxygenase products 20-fold over the natural-abundance level of 0.

View Article and Find Full Text PDF

We have used a frequency-selective rotational-echo double-resonance (REDOR) solid-state NMR experiment to measure the concentrations of glycine-glycine pairs in proteins (and protein precursors) of intact leaves of plants exposed to both high- and low-CO(2) atomospheres. The results are interpreted in terms of differences in cell-wall biosynthesis between plant species. We illustrate this variability by comparing the assimilation of label in cheatgrass and soybean leaves labeled using (15)N-fertilizer and (13)CO(2) atmospheres.

View Article and Find Full Text PDF

The inter-nal C-Ge-C bond angle in the germacyclo-butane ring of the title compound, C(17)H(14)F(6)Ge or [Ge(C(3)H(6))(C(7)H(4)F(3))(2)], is 77.8 (3)°. The -CF(3) groups display rotational disorder [occupancies 0.

View Article and Find Full Text PDF