The ongoing SARS-CoV-2 coronavirus pandemic of 2020-2021 underscores the need for manufacturing platforms that can rapidly produce monoclonal antibody (mAb) therapies. As reported here, a platform based on produced mAb therapeutics with high batch-to-batch reproducibility and flexibility, enabling production of 19 different mAbs of sufficient purity and safety for clinical application(s). With a single manufacturing run, impurities were effectively removed for a representative mAb product (the ZMapp component c4G7).
View Article and Find Full Text PDFStable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2.
View Article and Find Full Text PDFWe developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2-8 or 22-28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) hold great promise for treating diseases ranging from cancer to infectious disease. Manufacture of mAbs is challenging, expensive, and time-consuming using mammalian systems. We describe detailed methods used by Kentucky BioProcessing (KBP), a subsidiary of British American Tobacco, for producing high quality mAbs in a Nicotiana benthamiana host.
View Article and Find Full Text PDFTechnology is the basis of scientific progress and is an essential component for continued competitiveness in industry. The development of a new drug candidate is a long and expensive process, in which a molecule undergoes several stages of research (both pre-clinical and clinical) before being approved for commercialization. Scientific progress has revolutionized the pharmaceutical industry and reshaped the processes by which new drugs are discovered, investigated, and developed.
View Article and Find Full Text PDFRecombinant subunit vaccines are an efficient strategy to meet the demands of a possible influenza pandemic, because of rapid and scalable production. However, vaccines made from recombinant hemagglutinin (HA) subunit protein are often of low potency, requiring high dose or boosting to generate a sustained immune response. We have improved the immunogenicity of a plant-made HA vaccine by chemical conjugation to the surface of the Tobacco mosaic virus (TMV) which is non infectious in mammals.
View Article and Find Full Text PDFThis review describes the adaptation of the plant virus-based transient expression system, magnICON(®) for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called "deconstructed" viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins.
View Article and Find Full Text PDFPlants have been proposed as an attractive alternative for pharmaceutical protein production to current mammalian or microbial cell-based systems. Eukaryotic protein processing coupled with reduced production costs and low risk for mammalian pathogen contamination and other impurities have led many to predict that agricultural systems may offer the next wave for pharmaceutical product production. However, for this to become a reality, the quality of products produced at a relevant scale must equal or exceed the predetermined release criteria of identity, purity, potency and safety as required by pharmaceutical regulatory agencies.
View Article and Find Full Text PDFTo prevent sexually transmitted HIV, the most desirable active ingredients of microbicides are antiretrovirals (ARVs) that directly target viral entry and avert infection at mucosal surfaces. However, most promising ARV entry inhibitors are biologicals, which are costly to manufacture and deliver to resource-poor areas where effective microbicides are urgently needed. Here, we report a manufacturing breakthrough for griffithsin (GRFT), one of the most potent HIV entry inhibitors.
View Article and Find Full Text PDFOilseed rape mosaic virus (ORMV) is a tobamovirus taxonomically distinct from the type member of the genus, Tobacco mosaic virus (TMV). Both viruses display a specific host range, although they share certain hosts, such as Arabidopsis thaliana, Nicotiana benthamiana and N. tabacum, on which they induce different symptoms.
View Article and Find Full Text PDFLysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Genetic LAL mutations lead to Wolman disease (WD) and cholesteryl ester storage disease (CESD). An LAL-null (lal(-/-)) mouse model resembles human WD/CESD with storage of CEs and TGs in multiple organs.
View Article and Find Full Text PDFRNA virus vectors are attractive vaccine delivery agents capable of directing high-level gene expression without integration into host cell DNA. However, delivery of non-encapsidated RNA viral vectors into animal cells is relatively inefficient. By introducing the tobacco mosaic virus (TMV) origin of assembly into the RNA genome of Semliki Forest virus (SFV), we generated an SFV expression vector that could be efficiently packaged (trans-encapsidated) in vitro by purified TMV coat protein (CP).
View Article and Find Full Text PDFChemical conjugation of CTL peptides to tobacco mosaic virus (TMV) has shown promise as a molecular adjuvant scaffold for augmentation of cellular immune responses to peptide vaccines. This study demonstrates the ease of generating complex multipeptide vaccine formulations using chemical conjugation to TMV for improved vaccine efficacy. We have tested a model foreign antigen target-the chicken ovalbumin-derived CTL peptide (Ova peptide), as well as mouse melanoma-associated CTL epitopes p15e and tyrosinase-related protein 2 (Trp2) peptides that are self-antigen targets.
View Article and Find Full Text PDFFusion of peptides to viral carriers has proven an effective method for improving cellular immunity. In this study we explore the ability of a plant virus, Tobacco mosaic virus (TMV), to stimulate cellular immunity by interacting directly with immune cells. Fluorescently labeled TMV was incubated in vitro with murine spleen or lymph node cells, and near quantitative labeling of lymphocytes was achieved after 2 h, which persisted for up to 48 h.
View Article and Find Full Text PDFCottontail rabbit papillomavirus (CRPV) and rabbit oral papillomavirus (ROPV) represent distantly related, cutaneous and mucosal tissue tropic papillomaviruses respectively that can infect the same host. These two viruses were used to test the effectiveness of an L2 peptide-based vaccine (aa 94-122) that was delivered on the surface of recombinant tobacco mosaic virus (rTMV) particles. Groups of NZW rabbits received combinations of CRPVL2, ROPVL2 and CRPV+ROPVL2 rTMV vaccines, and were then challenged with infectious CRPV and ROPV.
View Article and Find Full Text PDFDevelopment of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity.
View Article and Find Full Text PDFUsing an Agrobacterium-mediated transient assay, we screened the 15.5-kb genome of the Beet yellows virus for proteins with RNA silencing suppressor activity. Among eight proteins tested, only a 21-kDa protein (p21) was able to suppress double-stranded (ds) RNA-induced silencing of the green fluorescent protein (GFP) mRNA.
View Article and Find Full Text PDFThe secretory proteins of Leishmania are thought to be involved in the parasite survival inside the insect vector or mammalian host. It is clear from studies in higher eukaryotes that proper folding in the endoplasmic reticulum and targeting out of the endoplasmic reticulum is critical for the function of secretory proteins. The endoplasmic reticulum chaperones such as calreticulin play an important role in the quality control of secretory proteins.
View Article and Find Full Text PDFAnnu Rev Phytopathol
December 2002
Historically, the study of plant viruses has contributed greatly to the elucidation of eukaryotic biology. Recently, concurrent with the development of viruses into expression vectors, the biotechnology industry has developed an increasing number of disease therapies utilizing recombinant proteins. Plant virus vectors are viewed as a viable option for recombinant protein production.
View Article and Find Full Text PDFKnowledge of gene function is critical to the development of new plant traits for improved agricultural and industrial applications. Viral expression vectors offer a rapid and proven method to provide epigenetic expression of foreign sequences throughout infected plants. Expression of these sequences from viral vectors can lead to gain- or loss-of-function phenotypes, allowing gene function to be determined by phenotypic or biochemical effects in the infected plant.
View Article and Find Full Text PDFVirus expression vectors based on the tobacco mosaic virus (TMV) genome are powerful tools for foreign gene expression in plants. However, the inclusion of increased genetic load in the form of foreign genes limits the speed of systemic plant invasion and host range of these vectors due to reduced replication and movement efficiencies. To improve these properties of TMV vectors, the gene encoding the 30-kDa movement protein was subjected to mutagenesis and DNA shuffling.
View Article and Find Full Text PDFRNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize.
View Article and Find Full Text PDF