Despite the fact that GeTe is known to be a very interesting material for applications in thermoelectrics and for phase-change memories, the knowledge on its low-temperature transport properties is only limited. We report on phase-coherent phenomena in the magnetotransport of GeTe nanowires. From universal conductance fluctuations measured on GeTe nanowires with Au contacts, a phase-coherence length of about 280 nm at 0.
View Article and Find Full Text PDFOver the past decade, the richness of electronic properties of graphene has attracted enormous interest for electrically detecting chemical and biological species using this two-dimensional material. However, the creation of practical graphene electronic sensors greatly depends on our ability to understand and maintain a low level of electronic noise, the fundamental reason limiting the sensor resolution. Conventionally, to reach the largest sensing response, graphene transistors are operated at the point of maximum transconductance, where 1/ noise is found to be unfavorably high and poses a major limitation in any attempt to further improve the device sensitivity.
View Article and Find Full Text PDFIn this Letter, the ambipolar properties of an electrolyte-gated graphene field-effect transistor (GFET) have been explored to fabricate frequency-doubling biochemical sensor devices. By biasing the ambipolar GFETs in a common-source configuration, an input sinusoidal voltage at frequency f applied to the electrolyte gate can be rectified to a sinusoidal wave at frequency 2f at the drain electrode. The extraordinary high carrier mobility of graphene and the strong electrolyte gate coupling provide the graphene ambipolar frequency doubler an unprecedented unity gain, as well as a detection limit of ∼4 pM for 11-mer single strand DNA molecules in 1 mM PBS buffer solution.
View Article and Find Full Text PDFIt is very challenging to study the behavior of neuronal cells in a network due to the multiple connections between the cells. Our idea is then to simplify such a network with a configuration where cells can have just a fixed number of connections in order to create a well-defined and ordered network. Here, we report about guiding primary cortical neurons with three-dimensional gold microspines selectively functionalized with an amino-terminated molecule.
View Article and Find Full Text PDFThe quality of the recording and stimulation capabilities of multielectrode arrays (MEAs) substantially depends on the interface properties and the coupling of the cell with the underlying electrode area. The purpose of this work was the investigation of a three-dimensional nanointerface, enabling simultaneous guidance and recording of electrogenic cells (HL-1) by utilizing nanostructures with a mushroom shape on MEAs.
View Article and Find Full Text PDF