The ecological diversification of early mammals is one of the most globally transformative events in Earth's history and the Cretaceous Terrestrial Revolution (KTR) and end-Cretaceous mass extinction are commonly hailed as catalysts. However, a confounding issue when examining this diversification is that it comprised nested radiations of mammalian subclades within the broader scope of mammalian evolution. In the past 200 million years, various independent groups experienced large-scale radiations, each involving ecological diversification from ancestral lineages of small insectivores; examples include Jurassic mammaliaforms, Late Cretaceous metatherians, and Cenozoic placentals.
View Article and Find Full Text PDFThe long-standing view that Mesozoic mammaliaforms living in dinosaur-dominated ecosystems were ecologically constrained to small size and insectivory has been challenged by astonishing fossil discoveries over the last three decades. By studying these well-preserved early mammaliaform specimens, paleontologists now agree that mammaliaforms underwent ecomorphological diversification during the Mesozoic Era. This implies that Mesozoic mammaliaform communities had ecological structure and breadth that were comparable to today's small-bodied mammalian communities.
View Article and Find Full Text PDFIguanomorpha (stem + crown Iguania) is a diverse squamate clade with members that predominate many modern American lizard ecosystems. However, the temporal and palaeobiogeographic origins of its constituent crown clades (e.g.
View Article and Find Full Text PDFMarsupial mammal relatives (stem metatherians) from the Mesozoic Era (252-66 million years ago) are mostly known from isolated teeth and fragmentary jaws. Here we report on the first near-complete skull remains of a North American Late Cretaceous metatherian, the stagodontid Didelphodon vorax. Our phylogenetic analysis indicates that marsupials or their closest relatives evolved in North America, as part of a Late Cretaceous diversification of metatherians, and later dispersed to South America.
View Article and Find Full Text PDFMetatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas.
View Article and Find Full Text PDFThe Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals.
View Article and Find Full Text PDFWe report the discovery of Juchilestes liaoningensis, a new genus and species of eutriconodont mammal from the Lujiatun Site of the Lower Cretaceous Yixian Formation (123.2 +/- 1.0 Ma; Lower Aptian).
View Article and Find Full Text PDFThe study of mammalian evolution depends greatly on understanding the evolution of teeth and the relationship of tooth shape to diet. Links between gross tooth shape, function and diet have been proposed since antiquity, stretching from Aristotle to Cuvier, Owen and Osborn. So far, however, the possibilities for exhaustive, quantitative comparisons between greatly different tooth shapes have been limited.
View Article and Find Full Text PDF