Dual-domain solute transport models produce significantly improved agreement to observations compared to single-domain (advection-dispersion) models when used in an a posteriori data fitting mode. However, the use of dual-domain models in a general predictive manner has been a difficult and persistent challenge, particularly at field-scale where characterization of permeability and flow is inherently limited. Numerical experiments were conducted in this study to better understand how single-rate mass transfer parameters vary with aquifer attributes and contaminant exposure.
View Article and Find Full Text PDFA graded approach to flow and transport modeling has been used as a cost effective solution to evaluating potential groundwater risk in support of Deactivation and Decommissioning activities at the United States Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. This approach balances modeling complexity with potential risk and has been successfully used at SRS to reduce costs and accelerate schedule without compromising human health or the environment. The approach incorporates both simple spreadsheet calculations (i.
View Article and Find Full Text PDFSubgrid modeling of some type is typically used to account for heterogeneity at scales below the grid scale. The single-domain model (SDM), employing field-scale dispersion, and the dual-domain model (DDM), employing local hydrodynamic dispersion and exchange between domains having large hydraulic conductivity contrasts, are well-known examples. In this paper, the two modeling approaches are applied to tritium migration from the H-area seepage basins to a nearby stream--Fourmile Branch--at the Savannah River Site.
View Article and Find Full Text PDF