Publications by authors named "Gregory N Smith"

Hypothesis: Enveloped viruses are pivotal in causing various illnesses, including influenza and COVID-19. The antimicrobial peptide LL-37, a critical part of the human innate immune system, exhibits potential as an antiviral agent capable of thwarting these viral threats. Its mode of action involves versatile and non-specific interactions that culminate in dismantling the viral envelope, ultimately rendering the viruses inert.

View Article and Find Full Text PDF

Waterborne polyurethane (WPU) has attracted significant interest as a promising alternative to solvent-based polyurethane (SPU) due to its positive impact on safety and sustainability. However, significant limitations of WPU, such as its weaker mechanical strength, limit its ability to replace SPU. Triblock amphiphilic diols are promising materials to enhance the performance of WPU due to their well-defined hydrophobic-hydrophilic structures.

View Article and Find Full Text PDF

Skim milk concentrates have important applications in the dairy industry, often as intermediate ingredients. Concentration of skim milk by reverse osmosis membrane filtration induces water removal, which reduces the free volume between the colloidal components, in particular the casein micelles. Thermal treatment before or after concentration impacts the morphology of casein micelles.

View Article and Find Full Text PDF

Contrast-variation small-angle neutron scattering (CV-SANS) is an excellent way to determine the structure of complex, hierarchical colloids, including self-assembled biological systems. In these experiments, the scattering length density of solvents is changed (by varying the ratio of water or [Formula: see text] and heavy water or [Formula: see text]) to highlight or mask scattering from different components in the system. This approach has been used with synthetic colloids, but it is also increasingly being used in the biological and food sciences.

View Article and Find Full Text PDF

Milk is a ubiquitous foodstuff and food ingredient, and milk caseins are key to the structural properties of milk during processing and storage. Caseins self-assemble into nanometer-sized colloids, referred to as "micelles", and particles of this size are ideally suited to study by small-angle scattering (SAS). Previous SAS measurements have almost exclusively focussed on the internal structure of the micelles.

View Article and Find Full Text PDF

The electrolytic conductivity of two electrolytes as solutions in the nonpolar solvent, n -dodecane, as a function of concentration has been studied. One was a small molecule electrolyte (tetraalkyl cation and a highly fluorinated tetraphenylborate anion), and the other was a macromolecular electrolyte (cation-containing poly(alkyl methacrylate) chain with the same anion). Two series of the macromolecular cation were prepared: one with entirely cation-containing molecules and the other with a small proportion (10%) cation-containing and the rest nonionic.

View Article and Find Full Text PDF

Hypothesis: To study molecular exchange between colloids requires the preparation of suitably labelled species. Deuterium isotopic labelling has been used to prepare two chemically identical yet isotopically distinguishable poly(lauryl methacrylate)-poly(methyl methacrylate) (PLMA-PMMA) diblock copolymer colloids by polymerisation-induced self-assembly (PISA) directly in an alkane solvent. Molecular exchange should be detectable by performing small-angle neutron scattering (SANS) measurements on the dispersions.

View Article and Find Full Text PDF

Hypothesis: Diblock copolymer nanoparticles prepared in non-polar solvents that are sterically stabilized but possess ionic functionality from the inclusion of cationic comonomers in the stabilizer shell are known to exhibit complex electrokinetic behavior (Chem. Sci. 9 (2018) 922-934).

View Article and Find Full Text PDF

Hard-sphere particles in nonpolar solvents are an essential tool for colloid scientists. Sterically stabilized poly(methyl methacrylate) (PMMA) particles have long been used as the exemplary hard-sphere system. However, neither the particles themselves nor the poly(12-hydroxystearic acid) (PHSA) stabilizer necessary to prevent aggregation in nonpolar solvents are commercially available.

View Article and Find Full Text PDF

Refractive index matched particles serve as essential model systems for colloid scientists, providing hard spheres to explore structure and dynamics. The poly(methyl methacrylate) latexes typically used are often refractive index matched by dispersing them in binary solvent mixtures, but this can lead to undesirable changes, such as particle charging or swelling. To avoid these shortcomings, we have synthesized refractive index matched colloids using polymerization-induced self-assembly (PISA) rather than as polymer latexes.

View Article and Find Full Text PDF

Poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer nanoparticles were synthesized via polymerization-induced self-assembly (PISA) using reversible addition-fragmentation chain-transfer (RAFT) aqueous emulsion polymerization in D2O. Such PISA syntheses produce sterically-stabilized nanoparticles in situ and can be performed at relatively high copolymer concentrations (up to 50 wt%). This PGMA-PBzMA formulation is known to form only spherical nanoparticles in water using aqueous emulsion polymerization (Macromolecules, 2014, 47, 5613-5623), which makes it an ideal model system for exploring new characterization methods.

View Article and Find Full Text PDF

Stabilizing charged species in nonpolar solvents is challenging due to their low dielectric constant. As a contrast to formally ionic electrolytes, two series of acidic "potential" electrolytes have been developed in this study. These can be ionized by combining them stoichiometrically with a small molecule base in a typical nonpolar solvent, n-dodecane.

View Article and Find Full Text PDF

Cationic diblock copolymer nanoparticles have been prepared in -dodecane polymerization-induced self-assembly (PISA). A previously reported poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) PISA formulation ( 2016, , 5078-5090) was modified by statistically copolymerizing an oil-soluble cationic methacrylic monomer, (2-(methacryloyloxy)ethyl)trimethylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, with either SMA or BzMA, to produce either charged shell or charged core nanoparticles. The electrokinetics were studied as a function of many variables (function of volume function, particle size, solvent viscosity, and number of ions per chain).

View Article and Find Full Text PDF

The electrophoresis of a well-established model system of charged colloids in nonpolar solvents has been studied as a function of particle volume fraction at constant surfactant concentration. Dispersions of poly(12-hydroxystearic acid)-stabilized poly(methyl methacrylate) (PMMA) latexes in dodecane were prepared with added Aerosol OT surfactant as the charging agent. The electrophoretic mobility (μ) of the PMMA latexes is found to decrease with particle concentration.

View Article and Find Full Text PDF

Dispersions of poly(methyl methacrylate) (PMMA) latexes were prepared in a low dielectric, nonpolar solvent (dodecane) both with and without the oil-soluble electrolyte, tetradodecylammonium-tetrakis(3,5-bis(trifluoromethyl)phenyl)borate. For dispersions with a high concentration of background electrolyte, the latexes become colloidally unstable and sediment in a short period of time (<1 h). This is completely reversible upon dilution.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional studies often use microscopy on dried gels, assuming this method does not alter the gel's structure, but this assumption is questionable.
  • * This research utilizes small angle neutron scattering (SANS) to examine low molecular weight hydrogels made from dipeptides, demonstrating that drying can significantly affect the network structure.
View Article and Find Full Text PDF

Hypothesis: Poly(methyl methacrylate) (PMMA) latexes in nonpolar solvents are an excellent model system to understand phenomena in low dielectric media, and understanding their internal structure is critical to characterizing their performance in both fundamental studies of colloidal interactions and in potential industrial applications. Both the PMMA cores and the poly(12-hydroxystearic acid) (PHSA) shells of the latexes are known to be penetrable by solvent and small molecules, but the relevance of this for the properties of these particles is unknown.

Experiments: These particles can be prepared in a broad range of sizes, and two PMMA latexes dispersed in n-dodecane (76 and 685nm in diameter) were studied using techniques appropriate to their size.

View Article and Find Full Text PDF

This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture.

View Article and Find Full Text PDF

Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks.

View Article and Find Full Text PDF

Hypothesis: Sodium dioctylsulfosuccinate (Aerosol OT or NaAOT) is a well-studied charging agent for model poly(methyl methacrylate) (PMMA) latexes dispersed in nonpolar alkane solvents. Despite this, few controlled variations have been made to the molecular structure. A series of counterion-exchanged analogs of NaAOT with other alkali metals (lithium, potassium, rubidium, and cesium) were prepared, and it was expected that this should influence the stabilization of charge on PMMA latexes and the properties of the inverse micelles.

View Article and Find Full Text PDF

A series of eight sodium sulfonic acid surfactants with differently branched tails (four double-chain sulfosuccinates and four triple-chain sulfocarballylates) were studied as charging agents for sterically stabilized poly(methyl methacrylate) (PMMA) latexes in dodecane. Tail branching was found to have no significant effect on the electrophoretic mobility of the latexes, but the number of tails was found to influence the electrophoretic mobility. Triple-chain, sulfocarballylate surfactants were found to be more effective.

View Article and Find Full Text PDF

Sterically-stabilized poly(methyl methacrylate) (PMMA) latexes dispersed in nonpolar solvents are a classic, well-studied system in colloid science. This is because they can easily be synthesized with a narrow size distribution and because they interact essentially as hard spheres. These PMMA latexes can be charged using several methods (by adding surfactants, incorporating ionizable groups, or dispersing in autoionizable solvents), and due to the low relative permittivity of the solvents (εr ≈ 2 for alkanes to εr ≈ 8 for halogenated solvents), the charges have long-range interactions.

View Article and Find Full Text PDF

Hypothesis: The interaction of Aerosol OT (AOT) surfactant with systems of model colloids in nonaqueous solvents (water-in-oil microemulsions, surfactant-stabilized silica organosols, and sterically-stabilized PMMA latexes) is expected to be system specific. Two limiting cases are expected: adsorption, with surfactant located at the particle surfaces, or absorption, with surfactant incorporated into the particle cores.

Experiments: Two approaches have been used to determine how AOT is distributed in the colloidal systems.

View Article and Find Full Text PDF

Hypothesis: Silica nanoparticles can be dispersed in organic solvents (organosols) using surfactants, such as didodecyldimethylammonium bromide (DDAB). DDAB analogs prepared with lathanide tetrahalide counterions, either a high-magnetic moment ion (HoCl3Br, DDAH) or low-magnetic moment one (NdCl3Br, DDAN), are expected to produce charged particles, but only DDAH-stabilized dispersions are expected to be magnetically responsive.

Experiments: Phase-analysis light scattering (PALS) measurements have been performed to determine the charge on DDAH- and DDAN-stabilized organosols.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono56g9qgvfb621n7p04d71n84ui08s561): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once