We present an efficient set of methods for propagating excited-state dynamics involving a large number of configuration interaction singles (CIS) or Tamm-Dancoff approximation (TDA) single-reference excited states. Specifically, (i) following Head-Gordon et al., we implement an exact evaluation of the overlap of singly-excited CIS/TDA electronic states at different nuclear geometries using a biorthogonal basis and (ii) we employ a unified protocol for choosing the correct phase for each adiabat at each geometry.
View Article and Find Full Text PDFFor future use in modeling photoexcited dynamics and intersystem crossing, we calculate spin-adiabatic states and their analytical nuclear gradients within configuration interaction singles theory. These energies and forces should be immediately useful for surface hopping dynamics, which are natural within an adiabatic framework. The resulting code has been implemented within the Q-Chem software and preliminary results suggest that the additional cost of including spin-orbit coupling within the singles-singles block is not large.
View Article and Find Full Text PDFWe employ surface hopping trajectories to model the short-time dynamics of gas-phase and partially solvated 4-(N,N-dimethylamino)benzonitrile (DMABN), a dual fluorescent molecule that is known to undergo a nonadiabatic transition through a conical intersection. To compare theory vs time-resolved fluorescence measurements, we calculate the mixed quantum-classical density matrix and the ensemble averaged transition dipole moment. We introduce a diabatization scheme based on the oscillator strength to convert the TDDFT adiabatic states into diabatic states of L and L character.
View Article and Find Full Text PDFThe molecular characterization of the air/water interface is a key step in understanding fundamental multiphase phenomena ranging from heterogeneous chemical processes in the atmosphere to the hydration of biomolecules. The apparent simplicity of the air/water interface, however, masks an underlying complexity associated with the dynamic nature of the water hydrogen-bond network that has so far hindered an unambiguous characterization of its microscopic properties. Here, we demonstrate that the application of quantum many-body molecular dynamics, which enables spectroscopically accurate simulations of water from the gas to the condensed phase, leads to a definitive molecular-level picture of the interface region.
View Article and Find Full Text PDFVibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations.
View Article and Find Full Text PDFRecent work has shown that the many-body expansion of the interaction energy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e.
View Article and Find Full Text PDFThe behavior of water confined in MIL-53(Cr), a flexible metal-organic framework (MOF), is investigated through computational infrared spectroscopy. As the number of molecules adsorbed inside of the pores increases, the water OH stretch band of the linear infrared spectrum grows in intensity and approaches that of bulk water. To assess whether the water confined in MIL-53(Cr) becomes liquid-like, two-dimensional infrared spectra (2DIR) are also calculated.
View Article and Find Full Text PDFInfrared vibrational spectroscopy is a valuable tool for probing molecular structure and dynamics. However, obtaining an unambiguous molecular-level interpretation of the spectral features is made difficult, in part, due to the complex interplay of the dipole moment with the underlying vibrational structure. Here, we disentangle the contributions of the potential energy surface (PES) and dipole moment surface (DMS) to the infrared spectrum of liquid water by examining three classes of models, ranging in complexity from simple point charge models to accurate representations of the many-body interactions.
View Article and Find Full Text PDFThe MB-pol full-dimensional water potential introduced in the first two papers of this series [J. Chem. Theory Comput.
View Article and Find Full Text PDFA full-dimensional potential energy function (MB-pol) for simulations of water from the dimer to bulk phases is developed entirely from "first principles" by building upon the many-body expansion of the interaction energy. Specifically, the MB-pol potential is constructed by combining a highly accurate dimer potential energy surface [J. Chem.
View Article and Find Full Text PDFThe many-body convergence of the dipole moment and the dipole-dipole polarizability of water is investigated. It is found that, for systems of low symmetry like the water clusters examined here, simple measures such as dipole magnitudes and average polarizabilities may lead to an incomplete interpretation of the underlying physics. Alternative metrics are introduced that allow for an unambiguous characterization of both properties.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2013
The microscopic behavior of water under different conditions and in different environments remains the subject of intense debate. A great number of the controversies arise due to the contradictory predictions obtained within different theoretical models. Relative to conclusions derived from force fields or density functional theory, there is comparably less room to dispute highly correlated electronic structure calculations.
View Article and Find Full Text PDFA full-dimensional model of water, HBB2-pol, derived entirely from "first-principles", is introduced and employed in computer simulations ranging from the dimer to the liquid. HBB2-pol provides excellent agreement with the measured second and third virial coefficients and, by construction, reproduces the dimer vibration-rotation-tunneling spectrum. The model also predicts the relative energy differences between isomers of small water clusters within the accuracy of highly correlated electronic structure methods.
View Article and Find Full Text PDFBirth Defects Res A Clin Mol Teratol
August 2012