Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3.
View Article and Find Full Text PDFCyclophilin inhibition has been a target for the treatment of hepatitis C and other diseases, but the generation of potent, drug-like molecules through chemical synthesis has been challenging. In this study, a set of macrocyclic cyclophilin inhibitors was synthesized based on the core structure of the natural product sanglifehrin A. Initial compound optimization identified the valine-m-tyrosine-piperazic acid tripeptide (Val-m-Tyr-Pip) in the sanglifehrin core, stereocenters at C14 and C15, and the hydroxyl group of the m-tyrosine (m-Tyr) residue as key contributors to compound potency.
View Article and Find Full Text PDFThe multitude of roles that carbohydrates and their glyco-conjugates play in biological processes has stimulated great interest in determining the nature of their interactions in both normal and diseased states. Manipulating such interactions will provide leads for drug discovery. Of the major classes of biomolecule, carbohydrates are the most structurally diverse.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a treatment modality for the selective destruction of cancerous and nonneoplastic pathologies that involves the simultaneous presence of light, oxygen and a light-activatable chemical called a photosensitizer (PS) to achieve a cytotoxic effect. The photophysics and mechanisms of cell killing by PDT have been extensively studied in recent years, and PDT has received regulatory approval for the treatment of a number of diseases worldwide. As the application of this treatment modality expands with regard to both anatomical sites and disease stages, it will be important to develop strategies for enhancing PDT outcomes.
View Article and Find Full Text PDFMammalian glycoprotein biosynthesis produces heterogeneous ranges of proteins that possess the same peptide backbone but differ in the nature and site of glycosylation. This feature has frustrated efforts to develop therapeutic glycoproteins as well as the elucidation of biological functions of individual glycoforms. We have developed an attractive approach to well-defined glycoforms of glycoproteins by oxidative coupling of thioaldoses to cysteine-containing peptides and proteins to give disulfide-linked neoglycoconjugates.
View Article and Find Full Text PDFA range of well-defined IgG glycoforms was prepared by employing a combination of synthetic carbohydrate chemistry and genetic engineering. The key aspect of this methodology is the coupling of thioaldoses with cysteine-containing proteins to give disulfide-linked neoglycoproteins. This technology was applied to the synthesis of a series of synthetic N-glycan thioaldoses which were coupled to an aglycosylated IgG1-Fc fragment, engineered to have Cys-297 in place of glycan-linked Asn (Deltah-Fc N297C).
View Article and Find Full Text PDFDolichols are polyisoprenoid lipid components of mammalian membranes consisting of an average of 20 head-to-tail linked isoprene units of which the first isoprene is fully saturated. The unusual size of these lipids is intriguing and poses questions about the role of dolichol structure in biological processes. In order to probe structure and function we have synthesised potential dolichyl analogues that retain only the first two isoprene units and carry a second functional group within the terminal lipid chain.
View Article and Find Full Text PDF