Publications by authors named "Gregory M Nelson"

The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice.

View Article and Find Full Text PDF

Blood vascular endothelial cells (BECs) and the developmentally related lymphatic endothelial cells (LECs) create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment.

View Article and Find Full Text PDF

Multiple molecular chaperones interact with steroid receptors to promote functional maturation and stability of receptor complexes. The heat shock protein (Hsp)70 cochaperone Hip has been identified in conjunction with Hsp70, Hsp90, and the Hsp70/Hsp90 cochaperone Hop/Sti1p in receptor complexes during an intermediate stage of receptor assembly, but a functional requirement for Hip in the receptor assembly process has not been established. Because the budding yeast Saccharomyces cerevisiae contains orthologs for most of the receptor-associated chaperones yet lacks an orthologous Hip gene, we exploited the well-established yeast model for steroid receptor function to ask whether Hip can alter steroid receptor function in vivo.

View Article and Find Full Text PDF

The Hop/Sti1 co-chaperone binds to both Hsp70 and Hsp90. Biochemical and co-crystallographic studies have suggested that the EEVD-containing C terminus of Hsp70 or Hsp90 binds specifically to one of the Hop tetratricopeptide repeat domains, TPR1 or TPR2a, respectively. Mutational analyses of Hsp70 and Hop were undertaken to better characterize interactions between the C terminus of Hsp70 and Hop domains.

View Article and Find Full Text PDF

Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone.

View Article and Find Full Text PDF