The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast CAFs (myCAF) that are senescent (senCAF) in mouse and human breast tumors.
View Article and Find Full Text PDFUnlabelled: Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer.
View Article and Find Full Text PDFSmall nucleotide variants in non-coding regions of the genome can alter transcriptional regulation, leading to changes in gene expression which can activate oncogenic gene regulatory networks. Melanoma is heavily burdened by non-coding variants, representing over 99% of total genetic variation, including the well-characterized TERT promoter mutation. However, the compendium of regulatory non-coding variants is likely still functionally under-characterized.
View Article and Find Full Text PDFOvarian cancer has poor survival outcomes particularly for advanced stage, metastatic disease. Metastasis is promoted by interactions of stromal cells, such as cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), with tumor cells. CAFs play a key role in tumor progression by remodeling the TME and extracellular matrix (ECM) to result in a more permissive environment for tumor progression.
View Article and Find Full Text PDFUnlabelled: Ovarian cancer is the leading cause of gynecologic cancer-related deaths. The propensity for metastasis within the peritoneal cavity is a driving factor for the poor outcomes associated with this disease, but there is currently no effective therapy targeting metastasis. In this study, we investigate the contribution of stromal cells to ovarian cancer metastasis and identify normal stromal cell expression of the collagen receptor, discoidin domain receptor 2 (DDR2), that acts to facilitate ovarian cancer metastasis.
View Article and Find Full Text PDFCarcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge.
View Article and Find Full Text PDFOvarian cancer has the highest mortality of all gynecologic malignancies. As such, there is a need to identify molecular mechanisms that underlie tumor metastasis in ovarian cancer. Increased expression of receptor tyrosine kinase, DDR2, has been associated with worse patient survival.
View Article and Find Full Text PDFTumors contain bacteria, but the functional significance of this tumor microbiota is not appreciated. Fu et al. show that bacteria within breast tumor cells contribute to metastasis, in part, by enhancing tumor cell survival to mechanical fluid shear stress as would be found in the circulation.
View Article and Find Full Text PDFIt is now well appreciated that the tumor microenvironment (TME) surrounding primary tumors impacts tumor growth, progression (invasion and migration), and response to therapy. Broadly speaking, the TME is composed of cells (immune cells, activated fibroblasts, adipocytes, endothelial cells), acellular extracellular matrix (ECM), and cytokines or growth factors, some of which are bound or tethered to the ECM proteins. All these compartments undergo significant changes during tumor development and progression.
View Article and Find Full Text PDFBoth tumor cell-intrinsic signals and tumor cell-extrinsic signals from cells within the tumor microenvironment influence tumor cell dissemination and metastasis. The fibrillar collagen receptor tyrosine kinase (RTK) discoidin domain receptor 2 (DDR2) is essential for breast cancer metastasis in mouse models, and high expression of DDR2 in tumor and tumor stromal cells is strongly associated with poorer clinical outcomes. DDR2 tyrosine kinase activity has been hypothesized to be required for the metastatic activity of DDR2; however, inhibition of DDR2 tyrosine kinase activity, along with that of other RTKs, has failed to provide clinically relevant responses in metastatic patients.
View Article and Find Full Text PDFCancer cells function as primary architects of the tumor microenvironment. However, the molecular features of cancer cells that govern stromal cell phenotypes remain unclear. Here, we show that cancer-associated fibroblast (CAF) heterogeneity is driven by lung adenocarcinoma (LUAD) cells at either end of the epithelial-to-mesenchymal transition (EMT) spectrum.
View Article and Find Full Text PDFAn improved understanding of biomechanical factors that control tumor development, including angiogenesis, could explain why few of the promising treatment strategies discovered via in vitro models translate well into in vivo or clinical studies. The ability to manipulate and in real-time study the multiple independent biomechanical properties on cellular activity has been limited, primarily due to limitations in traditional in vitro platforms or the inability to manipulate such factors in vivo. We present a novel microfluidic platform that mimics the vascularized tumor microenvironment with independent control of interstitial flow and mechanical strain.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly.
View Article and Find Full Text PDFCollective cell migration is an adaptive, coordinated interactive process involving cell-cell and cell-extracellular matrix (ECM) microenvironmental interactions. A critical aspect of collective migration is the sensing and establishment of directional movement. It has been proposed that a subgroup of cells known as leader cells localize at the front edge of a collectively migrating cluster and are responsible for directing migration.
View Article and Find Full Text PDFCancer stem cells (CSCs), which play important roles in tumor initiation and progression, are resistant to many types of therapies. However, the regulatory mechanisms underlying CSC-specific properties, including self-renewal, are poorly understood. Here, we found that LATS1/2, the core Hippo pathway-kinases, were highly expressed in the oral squamous cell carcinoma line SAS, which exhibits high capacity of CSCs, and that depletion of these kinases prevented SAS cells from forming spheres under serum-free conditions.
View Article and Find Full Text PDFThe action of the collagen binding receptor tyrosine kinase (RTK) discoidin domain receptor 2 (DDR2) in both tumor and tumor stromal cells has been established as critical for breast cancer metastasis. Small molecule inhibitors that target the extracellular domain of RTKs are rare, as they have classically been regarded as too small to block binding with large polypeptide ligands. Here, we report the identification and characterization of a selective, extracellularly acting small molecule inhibitor (WRG-28) of DDR2 that uniquely inhibits receptor-ligand interactions via allosteric modulation of the receptor.
View Article and Find Full Text PDFThe EMT inducer SNAIL1 regulates breast cancer metastasis and its expression in human primary breast tumor predicts for poor outcomes. During tumor progression SNAIL1 has multiple effects in tumor cells that can impact metastasis. An inflammatory tumor microenvironment also impacts metastasis and recently SNAIL1 has been implicated as modulating the secretion of cytokines that can influence the tumor immune infiltrate.
View Article and Find Full Text PDFThe mesenchymal gene program has been shown to promote the metastatic progression of ovarian cancer; however, specific proteins induced by this program that lead to these metastatic behaviors have not been identified. Using patient derived tumor cells and established human ovarian tumor cell lines, we find that the Epithelial-to-Mesenchymal Transition inducing factor TWIST1 drives expression of discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase (RTK) that recognizes fibrillar collagen as ligand. The expression and action of DDR2 was critical for mesothelial cell clearance, invasion and migration in ovarian tumor cells.
View Article and Find Full Text PDFThe role of cancer-associated fibroblasts (CAFs) as regulators of tumor progression, specifically vascular growth, has only recently been described. CAFs are thought to be more mechanically active but how this trait may alter the tumor microenvironment is poorly understood. We hypothesized that enhanced mechanical activity of CAFs, as regulated by the Rho/ROCK pathway, contributes to increased blood vessel growth.
View Article and Find Full Text PDFDuring morphogenesis and cancer metastasis, grouped cells migrate through tissues of dissimilar stiffness. Although the influence of matrix stiffness on cellular mechanosensitivity and motility are well-recognized, it remains unknown whether these matrix-dependent cellular features persist after cells move to a new microenvironment. Here, we interrogate whether priming of epithelial cells by a given matrix stiffness influences their future collective migration on a different matrix - a property we refer to as the 'mechanical memory' of migratory cells.
View Article and Find Full Text PDF