Many synaptic studies have utilized the experimental advantages of the Arthropod NMJ and the most prominent preparations have been the crayfish and Drosophila larval NMJs. Early cellular studies in the crayfish established the framework for later molecular studies in Drosophila. The two neuromuscular systems are compared including the advantages presented by each preparation for cellular analysis.
View Article and Find Full Text PDFPresynaptic Ca appears to play multiple roles in synaptic development and physiology. We examined the effect of buffering presynaptic Ca by expressing parvalbumin (PV) in Drosophila neurons, which do not normally express PV. The studies were performed on the identified Ib terminal that innervates muscle fiber 5.
View Article and Find Full Text PDFis a flowering shrub in the verbena family and its essential oil (EO) is known for its sedative, antidepressant and analgesic properties. In the Amazon region of Brazil, it is used in aquaculture to anesthetize fish during transport. Many of the specialized metabolites found in EOs presumably evolved to protect plants from herbivores, especially insects.
View Article and Find Full Text PDFRepetitive stimulation of the Drosophila larval NMJ can produce a reduction in the frequency of miniature excitatory postsynaptic currents. By buffering postsynaptic Ca , it was shown that the decrease in "mini" frequency was due to an increase in postsynaptic Ca .
View Article and Find Full Text PDFStudies of synaptic homeostasis during muscle fiber (MF) growth in Drosophila larvae have focused on the regulation of the quantal content of transmitter release. However, early studies in crayfish and frog suggested that regulation of quantal current size may be an integral mechanism in synaptic homeostasis. To examine this further in Drosophila, we compared the electrical properties, miniature excitatory postsynaptic potentials (minEPSPs) and miniature excitatory postsynaptic currents (minEPSCs) in different-sized MFs in third-instar larvae and for a single MF during larval growth.
View Article and Find Full Text PDFIn the mammalian central nervous system, the postsynaptic small-conductance Ca(2+)-dependent K(+) (SK) channel has been shown to reduce postsynaptic depolarization and limit Ca(2+) influx through N-methyl-d-aspartate receptors. To examine further the role of the postsynaptic SK channel in synaptic transmission, we studied its action at the Drosophila larval neuromuscular junction (NMJ). Repetitive synaptic stimulation produced an increase in postsynaptic membrane conductance leading to depression of excitatory postsynaptic potential amplitude and hyperpolarization of the resting membrane potential (RMP).
View Article and Find Full Text PDFDrosophila melanogaster is an excellent model animal for studying the neurotoxicology of lead. It has been known since ancient Roman times that long-term exposure to low levels of lead results in behavioral abnormalities, such as what is now known as attention deficit hyperactivity disorder (ADHD). Because lead alters mechanisms that underlie developmental neuronal plasticity, chronic exposure of children, even at blood lead levels below the current CDC community action level (10 μg/dl), can result in reduced cognitive ability, increased likelihood of delinquency, behaviors associated with ADHD, changes in activity level, altered sensory function, delayed onset of sexual maturity in girls, and changes in immune function.
View Article and Find Full Text PDFJ Neurophysiol
August 2011
Postsynaptic intracellular Ca(2+) concentration ([Ca(2+)](i)) has been proposed to play an important role in both synaptic plasticity and synaptic homeostasis. In particular, postsynaptic Ca(2+) signals can alter synaptic efficacy by influencing transmitter release, receptor sensitivity, and protein synthesis. We examined the postsynaptic Ca(2+) transients at the Drosophila larval neuromuscular junction (NMJ) by injecting the muscle fibers with Ca(2+) indicators rhod-2 and Oregon Green BAPTA-1 (OGB-1) and then monitoring their increased fluorescence during synaptic activity.
View Article and Find Full Text PDFA quantitative analysis of Ca²+ dynamics requires knowledge of the Ca²+-binding ratio (κ(S) ); this has not been measured at Drosophila synaptic terminals or any invertebrate synaptic terminal. We measured κ(S) at a Ib motor terminal in Drosophila larvae comparing single-AP Ca²+ transients in synaptic terminals that contained varying concentrations of the Ca²+ indicator, Oregon Green 488 BAPTA-1 (OGB-1). Using a linear single-compartment model, κ(S) was calculated based upon the effect of [OGB-1] on the time constant (τ(decay) ) for the decay of intracellular free Ca²+ concentration ([Ca²+](i)).
View Article and Find Full Text PDFAlthough circadian oscillation in dynamics of intracellular Ca2+ signals has been observed in both plant and animal cells, it has remained unknown whether Ca2+ signals play an in vivo role in cellular oscillation itself. To address this question, we modified the dynamics of intracellular Ca2+ signals in circadian pacemaker neurons in vivo by targeted expression of varying doses of a Ca2+ buffer protein in transgenic Drosophila melanogaster. Intracellular Ca2+ buffering in pacemaker neurons results in dose-dependent slowing of free-running behavioral rhythms, with average period >3 h longer than control at the highest dose.
View Article and Find Full Text PDFThis study explores the feasibility of using a bullfrog fibroblast cell line (FT cells) expressing G protein coupled receptors (GPCRs) as the basis for a living cell-based biosensor. We have fabricated gold microelectrode arrays on a silicon dioxide substrate that supports long term, robust growth of the cells at room temperature and under ambient atmospheric conditions. Activation of an endogenous GPCR to ATP was monitored with an optical method that detects rises in intracellular calcium and with an electrochemical method that monitors the increased secretion of pre-loaded norepinephrine on a MEMS device.
View Article and Find Full Text PDFChanges in intracellular Ca2+ concentration ([Ca2+]i) play an important role in the function and plasticity of synapses. We characterized the changes in [Ca2+]i produced by action potentials (APs) along two identified motor terminals found on separate muscle fibers in Drosophila larvae and examined factors that influence the amplitude and duration of the residual Ca2+ signal. We were able to measure Ca2+ transients produced along terminals by both single APs and AP trains using Oregon Green 488 BAPTA-1 and streaming images at 20-50 Hz.
View Article and Find Full Text PDFIn Drosophila, we have found that some of the motor terminals in wandering third-instar larvae are sexually differentiated. In three out of the four body-wall muscle fibers that we examined, we found female terminals that produced a larger synaptic response than their male counterparts. The single motor terminal that innervates muscle fiber 5 produces an EPSP that is 69% larger in females than in males.
View Article and Find Full Text PDFPhasic and tonic motor nerves originating from crayfish abdominal ganglia, in 2-3-day-old cultured explants, display at their transected distal ends growth zones from which axonal sprouts arise. The subcellular morphology of this regenerative response was examined with thin serial-section electron microscopy and reveals two major remodeling features. First, the external sprouts that exit the nerve are a very small part of a much more massive sprouting response by individual axons comprising several orders of internal sprouts confined to the nerve.
View Article and Find Full Text PDFIntracellular free Ca2+ concentration ([Ca2+]i) plays an important role in the regulation of growth cone (GC) motility; however, the mechanisms responsible for clearing Ca2+ from GCs have not been examined. We studied the Ca2+-clearance mechanisms in GCs produced by crayfish tonic and phasic motor axons by measuring the decay of [Ca2+]i after a high [K+] depolarizing pulse using fura-2AM. Tonic motor axons regenerating in explant cultures develop GCs with more rapid Ca2+ clearance than GCs from phasic axons.
View Article and Find Full Text PDFLong term or chronic exposure to lead is associated with cognitive and other deficits in humans, which may reflect lead-induced changes in synaptic development and function. We believe that Drosophila has great potential as a model system for studying such changes. To test this, we compared the structure of single, identified synapses between identified axons (axons 1 and 2) and muscle fibers (fibers 6 and 7) in untreated 3rd instar larvae, and in larvae reared on medium made with 100 microM lead acetate in distilled water.
View Article and Find Full Text PDFIn Drosophila larvae, motoneurons show distinctive differences in the size of their synaptic boutons; that is, axon 1 has type Ib ("big" boutons) terminals and axon 2 has type Is ("small" boutons) terminals on muscle fibers 6 and 7. To determine whether axon 1 develops large boutons due to its high impulse activity, we reduced impulse activity and examined the motor terminals formed by axon 1. The number of functional Na(+) channels was reduced either with the nap(ts) mutation or by adding tetrodotoxin (TTX) to the media (0.
View Article and Find Full Text PDFPrevious studies of a crayfish explant culture demonstrated that regenerating motor axons with high impulse activity develop more rapid clearance of cytoplasmic free Ca(2+) than those with low impulse activity. We examined whether Ca(2+) clearance in mature axons also showed activity-dependent plasticity. We studied the phasic and tonic axons of the motor bundle innervating the crayfish closer muscle that display large differences in impulse activity.
View Article and Find Full Text PDF