Stormwater bioretention cells are green stormwater infrastructure systems that can help mitigate flooding and remove contaminants. Plants and bacteria improve nutrient removal and degrade organic contaminants; however, the roles of fungi in bioretention cells are less known. Although mycorrhizal fungi aid in plant growth/improve nutrient uptake, there is a notable lack of research investigating fungal diversity in bioretention cells.
View Article and Find Full Text PDFVolatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown strain LB400 on various BCs.
View Article and Find Full Text PDFPlant uptake of xenobiotic compounds is crucial for phytoremediation (including green stormwater infrastructure) and exposure potential during crop irrigation with recycled water. Experimentally determining the plant uptake for every relevant chemical is impractical; therefore, illuminating the role of specific functional groups on the uptake of trace organic contaminants is needed to enhance predictive power. We used benzimidazole derivatives to probe the impact of functional group electrostatic properties and position on plant uptake and metabolism using the hydroponic model plant .
View Article and Find Full Text PDFEnviron Sci Technol Lett
January 2023
Dichloroacetamide safeners are common ingredients in commercial herbicide formulations. We previously investigated the environmental fate of dichloroacetamides via photolysis and hydrolysis, but other potentially important, environmentally relevant fate processes remain uncharacterized and may yield products of concern. Here, we examined microbial biotransformation of two dichloroacetamide safeners, benoxacor and dichlormid, to identify products and elucidate pathways.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2023
Hypothesis: Aqueous foams are expected to constitute exquisite particularly suitable reactive medium for the oxidation of metals, since the reactant H can be supplied through the continuous liquid phase, while the reactant O can be transported through the gas bubbles.
Experiments: To test this hypothesis, we investigated the oxidation of a metallic copper cylinder immersed in an aqueous foam. To study the relation between the transport of these reactants and the kinetics of the chemical reaction we use a forced drainage setup which enables us to control both the advection velocity of the H ions through the foam and the foam liquid fraction.
Estrogens and estrogen-mimicking compounds in the aquatic environment are known to cause negative impacts to both ecosystems and human health. In this initial proof-of-principle study, we developed a novel vertically oriented silicon nanowire (vSiNW) array-based biosensor for low-cost, highly sensitive and selective detection of estrogens. The vSiNW arrays were formed using an inexpensive and scalable metal-assisted chemical etching (MACE) process.
View Article and Find Full Text PDFStormwater runoff capture and groundwater recharge can provide a sustainable means of augmenting the local water resources in water-stressed cities while simultaneously mitigating flood risk, provided that these processes do not compromise groundwater quality. We developed and tested for one year an innovative pilot-scale stormwater treatment train that employs cost-effective engineered geomedia in a continuous-flow unit-process system to remove contaminants from urban runoff during aquifer recharge. The system consisted of an iron-enhanced sand filter for phosphate removal, a woodchip bioreactor for nitrate removal coupled to an aeration step, and columns packed with different configurations of biochar- and manganese oxide-containing sand to remove trace metals and persistent, mobile, and toxic trace organic contaminants.
View Article and Find Full Text PDFWastewater treatment plant (WWTP) effluent-dominated streams provide critical habitat for aquatic and terrestrial organisms but also continually expose them to complex mixtures of pharmaceuticals that can potentially impair growth, behavior, and reproduction. Currently, few biomarkers are available that relate to pharmaceutical-specific mechanisms of action. In the experiment reported in this paper, zebrafish (Danio rerio) embryos at two developmental stages were exposed to water samples from three sampling sites (0.
View Article and Find Full Text PDFWastewater effluent-dominated streams are becoming increasingly common worldwide, including in temperate regions, with potential impacts on ecological systems and drinking water sources. We recently quantified the occurrence/ spatiotemporal dynamics of pharmaceutical mixtures in a representative temperate-region wastewater effluent-dominated stream (Muddy Creek, Iowa) under baseflow conditions and characterized relevant fate processes. Herein, we quantified the ecological risk quotients (RQs) of 19 effluent-derived contaminants of emerging concern (CECs; including: 14 pharmaceuticals, 2 industrial chemicals, and 3 neonicotinoid insecticides) and 1 run-off-derived compound (atrazine) in the stream under baseflow conditions, and estimated the probabilistic risks of effluent-derived CECs under all-flow conditions (i.
View Article and Find Full Text PDFUrbanization impacts land, air, and water, creating environmental gradients between cities and rural areas. Urban stormwater delivers myriad co-occurring, understudied, and mostly unregulated contaminants to aquatic ecosystems, causing a pollution gradient. Recipient ecosystems host interacting species that can affect each others' growth and responses to these contaminants.
View Article and Find Full Text PDFEnviron Sci Process Impacts
October 2022
Isothiazolinones biocides are water-soluble, low molecular weight, nitrogenous compounds widely used to prevent microbial growth in a variety of applications including personal care products and building façade materials. Because isothiazolinones from buildings wash off and enter stormwater, interactions with terrestrial plants may represent an important part of the environmental fate of these compounds (, in green stormwater infrastructure). Using the model plant grown hydroponically, we observed rapid (≥99% within 24 hours), plant-driven removal of four commonly used isothiazolinones: benzisothiazolinone (BIT), chloromethylisothiazolinone, methylisothiazolinone, and octylisothiazolinone.
View Article and Find Full Text PDFEnviron Sci Process Impacts
October 2022
There is increasing concern about tire wear compounds (TWCs) in surface water and stormwater as evidence grows on their toxicity and widespread detection in the environment. Because TWCs are prevalent in stormwater, there is a need to understand fate and treatment options including biotransformation in green infrastructure (e.g.
View Article and Find Full Text PDFThe extraction of Ta(v) as polyoxometallate species (H TaO ) using Mg-Fe based Layered Double Hydroxide (LDH) was evaluated using pristine material or after different pre-treatments. Thus, the uptake increased from 100 ± 5 mg g to 604 ± 30 mg g, for respectively the carbonated LDH and after calcination at 400 °C. The uptake with calcined solid after its reconstruction with Cl or NO anions has also been studied.
View Article and Find Full Text PDFAnammox is gaining popularity for treating wastewater containing high-strength ammonia due to lower energy demand compared to conventional nitrification-denitrification processes; however, anammox is reported to increase nitrate loads in the effluent. The objective of this study was to assess the applicability of recycled materials [recycled concrete aggregate (RCA) and rice husks (RH)] as a polishing step to improve anammox reactor effluent quality. Anammox effluents were separately passed through two single-stage columns containing RCA and RH, and one two-stage column (50% RCA, 50% RH) to quantify total N, ammonia, nitrate, nitrite, and phosphate removal efficiencies.
View Article and Find Full Text PDFWe recently discovered that transformation of the neonicotinoid insecticidal pharmacophore alters sorption propensity to activated carbon, with products adsorbing less than parent compounds. To assess the environmental fate of novel transformation products that lack commercially available standards, researchers must rely on predictive approaches. In this study, we combined computationally derived quantitative structure-activity relationship (QSAR) parameters for neonicotinoids and neonicotinoid transformation products with experimentally determined Freundlich partition constants (log for sorption to carbon nanotubes [CNTs] and granular activated carbon [GAC]) to model neonicotinoid and transformation product sorption.
View Article and Find Full Text PDFSafeners are used extensively in commercial herbicide formulations. Although safeners are regulated as inert ingredients, some of their transformation products have enhanced biological activity. Here, to fill gaps in our understanding of safener environmental fate, we determined rate constants and transformation products associated with the acid- and base-mediated hydrolysis of dichloroacetamide safeners AD-67, benoxacor, dichlormid, and furilazole.
View Article and Find Full Text PDFEvolving complex mixtures of pharmaceuticals and transformation products in effluent-dominated streams pose potential impacts to aquatic species; thus, understanding the attenuation dynamics in the field and characterizing the prominent attenuation mechanisms of pharmaceuticals and their transformation products (TPs) is critical for hazard assessments. Herein, we determined the attenuation dynamics and the associated prominent mechanisms of pharmaceuticals and their corresponding TPs via a combined long-term field study and controlled laboratory experiments. For the field study, we quantified spatiotemporal exposure concentrations of five pharmaceuticals and six associated TPs in a small, temperate-region effluent-dominated stream during baseflow conditions where the wastewater plant was the main source of pharmaceuticals.
View Article and Find Full Text PDFPhytotoxins are naturally produced toxins with potencies similar/higher than many anthropogenic micropollutants. Nevertheless, little is known regarding their environmental fate and off-field transport to streams. To fill this research gap, a network of six basins in the Midwestern United States with substantial soybean production was selected for the study.
View Article and Find Full Text PDFNeonicotinoids in aquatic systems have been predominantly associated with agriculture, but some are increasingly being linked to municipal wastewater. Thus, the aim of this work was to understand the municipal wastewater contribution to neonicotinoids in a representative, characterized effluent-dominated temperate-region stream. Our approach was to quantify the spatiotemporal concentrations of imidacloprid, clothianidin, thiamethoxam, and transformation product imidacloprid urea: 0.
View Article and Find Full Text PDFCyanobacterial harmful algal blooms (CyanoHABs) are pervasive and negatively impact lake water quality, resulting in economic losses and public health risks through exposure to cyanotoxins. Therefore, it is critical to better monitor and understand the complexity of CyanoHABs, but current methods do not fully describe the spatial and temporal variability of bloom events. In this work, we developed a framework for a multiscale and multi-modal monitoring approach for CyanoHABs combining drone-based near-range remote sensing with analytical measurements of microcystin cyanotoxins and chlorophyll-a.
View Article and Find Full Text PDFWidespread application of neonicotinoids has led to their proliferation in waters. Despite low neonicotinoid hydrophobicity, our prior studies implicated granular activated carbon (GAC) in neonicotinoid removal. Based on known receptor binding characteristics, we hypothesized that the insecticidal pharmacophore influences neonicotinoid sorption.
View Article and Find Full Text PDFEffluent-dominated streams are becoming increasingly common in temperate regions and generate complex pharmaceutical mixture exposure conditions that may impact aquatic organisms via drug-drug interactions. Here, we quantified spatiotemporal pharmaceutical exposure concentrations and composition mixture dynamics during baseflow conditions at four sites in a temperate-region effluent-dominated stream (upstream, at, and progressively downstream from effluent discharge). Samples were analyzed monthly for 1 year for 109 pharmaceuticals/degradates using a comprehensive U.
View Article and Find Full Text PDFTo improve the performance of polymeric electrospun nanofiber mats (ENMs) for equilibrium passive sampling applications in water, we integrated two types of multiwalled carbon nanotubes (CNTs; with and without surface carboxyl groups) into polyacrylonitrile (PAN) and polystyrene (PS) ENMs. For 11 polar and moderately hydrophobic compounds (-0.07 ≤ log ≤ 3.
View Article and Find Full Text PDF