Publications by authors named "Gregory Jerkiewicz"

We report on the electrochemical behavior and shape evolution of Pd nanocubes (Pd NCs) and Pd nanooctahedrons (Pd NOs) with an average size of 9.8 and 6.9 nm, respectively, in aqueous alkaline medium in the potential range of the underpotential deposition of H (UPD H) and H absorption.

View Article and Find Full Text PDF

Preparation of high-performance and durable electrocatalysts for anion exchange membrane water electrolysis is a crucial step toward the broad implementation of this technology. Here, we present an easily tunable, one-step hydrothermal method for the preparation of Ni-based (NiX, X = Co, Fe) layered double hydroxide nanoparticles (LDHNPs) for the oxygen evolution reaction (OER), using tris(hydroxymethyl)aminomethane (Tris-NH) for particle growth control. The LDHNPs are used as building blocks of mesoporous mixed metal oxides (MMOs) with a block copolymer template (Pluronic F127), followed by thermal treatment at 250 °C.

View Article and Find Full Text PDF

In this investigation, we report on the development of a method for activating polycrystalline metallic nickel (Ni(poly)) surfaces toward the hydrogen evolution reaction (HER) in N-saturated 1.0 M KOH aqueous electrolyte through continuous and pulsed ultrasonication (24 kHz, 44 ± 1.40 W, 60% acoustic amplitude, ultrasonic horn).

View Article and Find Full Text PDF

The most effective utilization of platinum (Pt) in fuel cells is achieved through the use of nanoparticles (NPs) that offer a large electrochemically active surface area. Because the stability of NPs decreases as they become smaller, their size and size distribution must be known in order to optimize the catalysts' durability, while offering high catalytic activity. Single particle inductively coupled plasma mass spectrometry (spICPMS) can quantify the mass of metallic NPs suspended in aqueous medium, which can then be converted into a size if the NPs' shape, density and composition are known.

View Article and Find Full Text PDF

This work compares the performance of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), single particle inductively coupled plasma mass spectrometry (spICPMS) and flow injection (FI) coupled to spICPMS for the characterization of synthetic ferromagnetic Ni nanoparticles (NPs) prepared with and without polyvinylpyrrolidone (PVP) stabilizer. Whereas single NPs measurement by XRD yielded nominal diameters of 13.7 and 16.

View Article and Find Full Text PDF

The growth of noble-metal single crystals via the flame fusion method was developed in the 1980s. Since then, there have been no major advancements to the technique until the recent development of the controlled-atmosphere flame fusion (CAFF) method to grow non-noble Ni single crystals. Herein, we demonstrate the generality of this method with the first preparation of fcc Cu as well as the first hcp and bcc single crystals of Co and Fe, respectively.

View Article and Find Full Text PDF

Flow injection (FI) in combination with inductively coupled plasma mass spectrometry (ICPMS) is advantageous for the analysis of volume-limited samples and is invaluable for the analysis of corrosive samples that would prematurely degrade ICPMS components. However, the dispersion process with 50-μL injections in FI degrades ICPMS sensitivity. Monosegmented flow analysis (MSFA), where the sample plug is in the middle of 1 mL of air, eliminates dispersion while preserving the rinsing effect of the carrier.

View Article and Find Full Text PDF

The electrochemical quartz-crystal nanobalance (EQCN) measures in situ mass changes associated with interfacial electrode processes. Real electrodes are not atomically flat, thus their surface roughness affects the conversion of frequency variations (Δf) to mass changes (Δm) associated with electrochemical processes. Here, we analyze Δm associated with the electrochemical H adsorption/desorption and surface oxide formation/reduction on Pt electrodes of gradually increasing surface roughness using the EQCN and cyclic-voltammetry in an aqueous HSO solution.

View Article and Find Full Text PDF

The electrochemical quartz-crystal nanobalance (EQCN) is an in situ technique that measures mass changes (Δm) associated with interfacial phenomena. Analysis of Δm sheds light on the mass balance (in addition to the charge and energy balances) and provides new insight into the nature of electrochemical processes. The EQCN measures changes in frequency (Δf) of a quartz-crystal resonator, which are converted into Δm using the Sauerbrey equation containing the characteristic constant (C).

View Article and Find Full Text PDF

We present a mathematical model of oxide formation and growth on platinum. The motivation stems from the necessity to understand platinum dissolution in the cathode catalyst layer of polymer electrolyte fuel cells. As is known, platinum oxide formation and reduction are strongly linked to platinum dissolution processes.

View Article and Find Full Text PDF

We report new results for electrochemical H adsorption on and absorption in octahedral palladium nanoparticles (Pd-NPs) with an average tip-to-tip size of 7.8 nm and a narrow size distribution. They reveal a very high H loading of 0.

View Article and Find Full Text PDF

The electrochemical quartz-crystal nanobalance has been used in electrochemistry research for over three decades. It provides an atomic/molecular level insight into the nature of interfacial electrochemical phenomena by measuring in situ mass changes on the nanogram scale. The sensitivity of this technique remains unknown because there have been no attempts to determine its limits of detection (LOD) or quantification (LOQ).

View Article and Find Full Text PDF
Article Synopsis
  • Single-particle inductively coupled plasma mass spectrometry (spICPMS) is a tool for counting and measuring metal-containing nanoparticles, but it requires careful measurement of sample uptake and nebulization efficiency to determine particle mass.
  • A new method called flow injection-spICPMS (FI-spICPMS) simplifies this process by avoiding the need for sample uptake rate determination, only requiring measurement of transport efficiency for particle number calculation.
  • Tests with this new method successfully measured the size and quantity of 60 nm gold nanoparticles, achieving similar accuracy to traditional spICPMS while maintaining the same size detection limit of 20 nm.
View Article and Find Full Text PDF

Anodic polarization of Pt electrodes in aqueous H2SO4 leads to the formation of a surface oxide (PtO). Herein, the surface oxide growth is accomplished using three different approaches: (i) chronoamperometry (CA); (ii) chronocoulometry (CC); and (iii) a combination of cyclic voltammetry (CV) and CA. The PtO reduction is accomplished potentiodynamically using voltammetry.

View Article and Find Full Text PDF

Electrochemically formed colored passive layers on titanium and their optical, surface morphology, and corrosion properties are presented and discussed. With the application of progressively higher AC voltages (VAC) during preparation of these passive layers, they are found to become more protective of the underlying metal, as determined from corrosion resistance measurements employing electrochemical polarization curve and inductively coupled plasma mass spectrometry experiments. The passive layers on titanium were found to be uniform in their surface morphology with no apparent cracks or pits.

View Article and Find Full Text PDF

Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development.

View Article and Find Full Text PDF

The potential range in which hydrogen electro-adsorption, electro-absorption, and evolution reaction occur is examined in an acidic medium using cyclic-voltammetry (CV) and Pd nanoparticles with controlled size and shape distributions. The three processes give rise to unique features in CV profiles and are observed in distinct potential ranges. This behavior is not observed for bulk Pd materials and arises due to the nanoscopic nature of the Pd materials.

View Article and Find Full Text PDF

Platinum is deposited on open-cell nickel foam in low loading amounts via chemical reduction of Pt cations (specifically, Pt(2+) or Pt(4+)) originating from aqueous Pt salt solutions. The resulting Pt-modified nickel foams (Pt/Ni foams) are characterized using complementary electrochemical and materials analysis techniques. These include electron microscopy to examine the morphology of the deposited material, cyclic voltammetry to evaluate the electrochemical surface area of the deposited Pt, and inductively coupled plasma optical emission spectrometry to determine the mass of deposited Pt on the Ni foam substrate.

View Article and Find Full Text PDF

Electrochemical treatment of Au(111) in aqueous H2SO4 solution by repetitive application of oxide formation-reduction cycles (OFRC) generates nanopatterned surfaces with long-range order. The pattern development depends on the lower and upper potential limits (EL, EU), the number (n) of OFRCs, and the potential scan rate (s). Surface patterning of Au(111) initially (n = 1-2) generates small islands and holes that are one atomic step in height.

View Article and Find Full Text PDF

There is an ongoing debate regarding the mechanism of Pt electrochemical dissolution. However, only off-line methods have so far been used, where separation of Pt species is performed separately from their detection. In this study, ion exchange chromatography coupled to inductively coupled plasma mass spectrometry was used for the first time to separate and detect Pt species generated by the electro-dissolution of a Pt electrode in 0.

View Article and Find Full Text PDF

Nickel-based metallic foams are commonly used in electrochemical energy storage devices (rechargeable batteries) as both current collectors and active mass support. These materials attract attention as tunable electrode materials because they are available in a range of chemical compositions, pore structures, pore sizes, and densities. This contribution presents structural, chemical, and electrochemical characterization of Ni-based metallic foams.

View Article and Find Full Text PDF

The formation of microporous oxide layers on titanium (Ti) by anodization in sulfuric acid (H2SO4) solution and the influence of prior hydrogen charging on their properties are examined using electrochemical techniques, scanning electron microscopy, grazing incident X-ray diffraction, and X-ray photoelectron spectroscopy. When Ti is anodized in 1 M aqueous H2SO4 solution at a high direct current (DC) potential (>150 V) for 1 min, a porous surface layer develops, and the process takes place with spark-discharge. Under these conditions, oxygen evolution at the Ti electrode proceeds vigorously and concurrently with the formation of anodic oxide.

View Article and Find Full Text PDF

Brightly colored and uniform passive layers on Zr can be formed by applying alternating current (ac) voltage (V(ac)) for 10 s in 10 wt % aqueous Na(2)SO(4) solution at T = 298 K. The coloration originating from iridescence can be fine-tuned by adjusting V(ac) in the 10-80 V range. Visible light microscopy analysis shows that different grains reveal two or three different colors due to the polycrystalline nature of Zr, and the resultant coloration is the sum of these contributions.

View Article and Find Full Text PDF

The oxidative stripping of a saturation layer of CO(chem) was studied on platinum nanoparticles of high shape selectivity and narrow size distribution. Nanospheres, nanocubes, and nano-octahedrons were synthesized using the water-in-oil microemulsion or polyacrylate methods. The three shapes allowed examination of the CO(chem) stripping in relation to the geometry of the nanoparticles and presence of specific nanoscopic surface domains.

View Article and Find Full Text PDF

Open-pore nickel (Ni) foams are characterized using surface science and electrochemical techniques. A scanning electron microscopy analysis reveals interconnected Ni struts that generate small and large pores of ca. 50 and 500 μm in size, respectively.

View Article and Find Full Text PDF