Publications by authors named "Gregory J Yeagle"

Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is used to ascertain the nature of the bonding interactions of various active site amino acids with the Mn ions that compose the oxygen-evolving cluster (OEC) in photosystem II (PSII) from the cyanobacterium Synechocystis sp. PCC 6803 poised in the S(2) state. Spectra of natural isotopic abundance PSII ((14)N-PSII), uniformly (15)N-labeled PSII ((15)N-PSII), and (15)N-PSII containing (14)N-histidine ((14)N-His/(15)N-PSII) are compared.

View Article and Find Full Text PDF

The monomeric iron(II) amido derivatives Fe{N(H)Ar*}(2) (1), Ar* = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Pr(i)(3))(2), and Fe{N(H)Ar(#)}(2) (2), Ar(#) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2), were synthesized and studied in order to determine the effects of geometric changes on their unusual magnetic properties. The compounds, which are the first stable homoleptic primary amides of iron(II), were obtained by the transamination of Fe{N(SiMe(3))(2)}(2), with HN(SiMe(3))(2) elimination, by the primary amines H(2)NAr* or H(2)NAr(#). X-ray crystallography showed that they have either strictly linear (1) or bent (2, N-Fe-N = 140.

View Article and Find Full Text PDF

Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is employed to measure the strength of the hyperfine coupling of magnetic nuclei to the paramagnetic (S = 1/2) S2 form of photosystem II (PSII). Previous X-band-frequency ESEEM studies indicated that one or more histidine nitrogens are electronically coupled to the tetranuclear manganese cluster in the S2 state of PSII. However, the spectral resolution was relatively poor at the approximately 9 GHz excitation frequency, precluding any in-depth analysis of the corresponding bonding interaction between the detected histidine and the manganese cluster.

View Article and Find Full Text PDF

Samples of the anatase phase of titania were treated under vacuum to create Ti(3+) surface-defect sites and surface O(-) and O(2) (-) species (indicated by electron paramagnetic resonance (EPR) spectra), accompanied by the disappearance of bridging surface OH groups and the formation of terminal Ti(3+)-OH groups (indicated by IR spectra). EPR spectra showed that the probe molecule [Re(3)(CO)(12)H(3)] reacted preferentially with the Ti(3+) sites, forming Ti(4+) sites with OH groups as the [Re(3)(CO)(12)H(3)] was adsorbed. Extended X-ray absorption fine structure (EXAFS) spectra showed that these clusters were deprotonated upon adsorption, with the triangular metal frame remaining intact; EPR spectra demonstrated the simultaneous removal of surface O(-) and O(2) (-) species.

View Article and Find Full Text PDF

The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz.

View Article and Find Full Text PDF

Phosphorus containing and octyl-terminated silicon nanoparticles (NPs) are generated by a solution reduction route under room temperature conditions for the first time and characterized by TEM, HRTEM, EDX, 1H/13C/31P NMR, EPR, and PL spectroscopy, then annealed to form a thin film with phosphorus doping confirmed by microprobe elemental analyses.

View Article and Find Full Text PDF

High-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy of a classical coordination complex, Mn(acac)(3) (Hacac = 2,4-pentanedione), has been performed on both solid powder and frozen solution (in CH(2)Cl(2)/toluene, 3:2 v/v) samples. Parallel mode detection X-band EPR spectra exhibiting resolved (55)Mn hyperfine coupling were additionally obtained for frozen solutions. Magnetic susceptibility and field-dependent magnetization measurements were also made on powder samples.

View Article and Find Full Text PDF