The paper presents a method to design and characterize mechanically robust solid acoustic metamaterials suitable for operation in dense fluids such as water. These structures, also called metafluids, behave acoustically as inertial fluids characterized by anisotropic mass densities and isotropic bulk modulus. The method is illustrated through the design and experimental characterization of a metafluid consisting of perforated steel plates held together by rubber coated magnetic spacers.
View Article and Find Full Text PDFAcoustic antennas have long been utilized to directionally steer acoustic waves in both air and water. Typically, these antennas are comprised of arrays of active acoustic elements, which are electronically phased to steer the acoustic profile in the desired direction. A new technology, known as an acoustic leaky wave antenna (LWA), has recently been shown to achieve directional steering of acoustic waves using a single active transducer coupled to a transmission line passive aperture.
View Article and Find Full Text PDFWe explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering.
View Article and Find Full Text PDFLaboratory measurements of enhanced sound transmission from water to air at low frequencies are presented. The pressure at a monitoring hydrophone is found to decrease for shallow source depths in agreement with the classical theory of a monopole source in proximity to a pressure release interface. On the other hand, for source depths below 1/10 of an acoustic wavelength in water, the radiation pattern in the air measured by two microphones becomes progressively omnidirectional in contrast to the classical geometrical acoustics picture in which sound is contained within a cone of 13.
View Article and Find Full Text PDFPentamode metamaterials are a class of acoustic metafluids that are characterized by a divergence free modified stress tensor. Such materials have an unconventional anisotropic stiffness and isotropic mass density, which allow themselves to mimic other fluid domains. Here we present a pentamode design formed by an oblique honeycomb lattice and producing customizable anisotropic properties.
View Article and Find Full Text PDFA computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed.
View Article and Find Full Text PDFMultiple scattering of acoustic waves in a planar horizontal waveguide by finite-length cylinders is considered. Cylinder height equals the waveguide depth, and both are vertically constrained by the pressure-release boundaries. An analytically exact solution is obtained via normal mode expansion method in conjunction with the concept of the T matrix.
View Article and Find Full Text PDFSeveral versions of the dispersion formula governing the acoustic propagation in bubbly liquids are shown to exhibit acausal behavior. The cause of this behavior is due to the inappropriate application of a low frequency approximation in the determination of the extinction of the signal from radiative scattering. Using a corrected causal formula, several principles of wave propagation in bubbly media consistent with the general theory of wave propagation in dispersive media are demonstrated: There exist two precursors to any finite signal.
View Article and Find Full Text PDFScattering from a Born inhomogeneity in a homogeneous, acoustical waveguide is considered and results compared to the corresponding scattering in a homogeneous, unbounded medium. It is found that the Ewald sphere in the unbounded medium case is replaced by a Ewald "strip" in a waveguide, the strip consisting of many individual Ewald spheres embedded in a ball the radius of which is twice that of an individual sphere. The physics behind the Ewald strip is discussed along with the implications of waveguide Born data.
View Article and Find Full Text PDF