Publications by authors named "Gregory J Offer"

Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial.

View Article and Find Full Text PDF

To increase the specific energy of commercial lithium-ion batteries, silicon is often blended into the graphite negative electrode. However, due to large volumetric expansion of silicon upon lithiation, these silicon-graphite (Si-Gr) composites are prone to faster rates of degradation than conventional graphite electrodes. Understanding the effect of this difference is key to controlling degradation and improving cell lifetimes.

View Article and Find Full Text PDF

Testing of lithium-ion batteries depends greatly on accurate temperature control in order to generate reliable experimental data. Reliable data is essential to parameterise and validate battery models, which are essential to speed up and reduce the cost of battery pack design for multiple applications. There are many methods to control the temperature of cells during testing, such as forced air convection, liquid cooling or conduction cooling using cooling plates.

View Article and Find Full Text PDF

Predicting lithium-ion battery degradation is worth billions to the global automotive, aviation and energy storage industries, to improve performance and safety and reduce warranty liabilities. However, very few published models of battery degradation explicitly consider the interactions between more than two degradation mechanisms, and none do so within a single electrode. In this paper, the first published attempt to directly couple more than two degradation mechanisms in the negative electrode is reported.

View Article and Find Full Text PDF

The expansion of lithium-ion batteries from consumer electronics to larger-scale transport and energy storage applications has made understanding the many mechanisms responsible for battery degradation increasingly important. The literature in this complex topic has grown considerably; this perspective aims to distil current knowledge into a succinct form, as a reference and a guide to understanding battery degradation. Unlike other reviews, this work emphasises the coupling between the different mechanisms and the different physical and chemical approaches used to trigger, identify and monitor various mechanisms, as well as the various computational models that attempt to simulate these interactions.

View Article and Find Full Text PDF

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements.

View Article and Find Full Text PDF

The degradation phenomena of thin-film solid state batteries caused by cycling at a high cut-off voltage and different temperatures were studied using an improved potentiometric measurement of entropy change combined with electrochemical impedance analysis and incremental capacity analysis. Entropy profiling is demonstrated as a viable non-destructive technique for solid state batteries that is sensitive to structural changes in electrodes during galvanostatic cycling, and is complementary to other techniques for studying degradation. The characteristic peaks and valleys in the entropy profile as a function of the state-of-charge could be closely correlated to theories of phase transitions in the cathode material.

View Article and Find Full Text PDF

Effective thermal management and tracking of battery degradation are two key challenges in the improved management of battery packs. Entropy change measurement is a non-destructive tool for characterizing both the thermal and structural properties of lithium batteries. However, conventional entropy measurements based on discontinuous potentiometric methods are too time-consuming for practical implementation in battery packs.

View Article and Find Full Text PDF

Yttria stabilized zirconia (YSZ) is an important oxide ion conductor used in solid oxide fuel cells, oxygen sensing devices, and for oxygen separation. Doping pure zirconia (ZrO) with yttria (YO) stabilizes the cubic structure against phonon induced distortions and this facilitates high oxide ion conductivity. The local atomic structure of the dopant is, however, not fully understood.

View Article and Find Full Text PDF

Lithium-sulfur cells present an attractive alternative to Li-ion batteries due to their large energy density, safety, and possible low cost. Their successful commercialisation is dependent on improving their performance, but also on acquiring sufficient understanding of the underlying mechanisms to allow for the development of predictive models for operational cells. To address the latter, we present a zero dimensional model that predicts many of the features observed in the behaviour of a lithium-sulfur cell during charge and discharge.

View Article and Find Full Text PDF

Yttria-stabilized zirconia (YSZ) is an important oxide ion conductor with applications in solid oxide fuel cells (SOFCs) and oxygen sensing devices. Doping the cubic phase of zirconia (c-ZrO2) with yttria (Y2O3) is isoelectronic, as two Zr(4+) ions are replaced by two Y(3+) ions, plus a charge compensating oxygen vacancy (Ovac). Typical doping concentrations include 3, 8, 10, and 12 mol %.

View Article and Find Full Text PDF

Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation.

View Article and Find Full Text PDF

Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell.

View Article and Find Full Text PDF

The assumption that "OH(ads)" or other oxygen containing species is formed on polycrystalline or nanoparticulate platinum through a fast and reversible process at relatively low potentials is often made. In this paper we discuss the implications of this assumption and the difficulty in reconciling it with experimental phenomena. We show how presenting chrono-amperometric transients as log-log plots for potentials steps in the presence and absence of an adlayer of carbon monoxide on polycrystalline platinum is particularly useful in understanding the time evolution of the CO oxidation reaction.

View Article and Find Full Text PDF