Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide.
View Article and Find Full Text PDFCorneal diseases are one of the leading causes of moderate-to-severe visual impairment and blindness worldwide, after glaucoma, cataract, and retinal disease in overall importance. Given its tendency to affect people at a younger age than other blinding conditions such as cataract and glaucoma, corneal scarring poses a huge burden both on the individuals and society. Furthermore, corneal scarring and fibrosis disproportionately affects people in poorer and remote areas, making it a significant ophthalmic public health problem.
View Article and Find Full Text PDFRetinal neovascularization, or pathological angiogenesis in the retina, is a leading cause of blindness in developed countries. Transforming growth factor-β-activated kinase 1 (TAK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) activated by TGF-β1 and other proinflammatory cytokines. TAK1 is also a key mediator of proinflammatory signals and plays an important role in maintaining vascular integrity upon proinflammatory cytokine stimulation such as TNFα.
View Article and Find Full Text PDFRetinal neovascularization is a severe complication of proliferative diabetic retinopathy (PDR). MicroRNAs (miRNAs) are master regulators of gene expression that play an important role in retinal neovascularization. In this study, we show that miR-143-3p is significantly downregulated in the retina of a rat model of oxygen-induced retinopathy (OIR) by miRNA-sequencing.
View Article and Find Full Text PDFCardiomyocytes derived from pluripotent stem cells are immature. Maturation of cardiomyocytes is a multifactorial dynamic process that involves various factors that cannot be fully recapitulated . Here, we report a novel tissue engineering chamber with an integrated electrical stimulator and electrodes that will allow wireless electrical stimulation of cardiac tissue .
View Article and Find Full Text PDFAngiogenesis plays a critical role in both physiological responses and disease pathogenesis. Excessive angiogenesis can promote neoplastic diseases and retinopathies, while inadequate angiogenesis can lead to aberrant perfusion and impaired wound healing. Transforming growth factor β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is a key modulator involved in a range of cellular functions including the immune responses, cell survival and death.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2020
Purpose: Corneal injury that occurs after burning with alkali initiates wound-healing processes, including inflammation, neovascularization, and fibrosis. Excessive reactions to injury can reduce corneal transparency and thereby compromise vision. The NADPH oxidase (Nox) enzyme complex is known to be involved in cell signaling for wound-healing angiogenesis, but its role in corneal neovascularization has been little studied.
View Article and Find Full Text PDFGene therapies that chronically suppress vascular endothelial growth factor (VEGF) represent a new approach for managing retinal vascular leakage and neovascularization. However, constitutive suppression of VEGF in the eye may have deleterious side effects. Here, we developed a novel strategy to introduce Flt23k, a decoy receptor that binds intracellular VEGF, fused to the destabilizing domain (DD) of Escherichia coli dihydrofolate reductase (DHFR) into the retina.
View Article and Find Full Text PDFDry eye disease (DED) has become common on a global scale in recent years. There is a wide prevalence of DED in different countries based on various ethnicities and environment. DED is a multifactorial ocular disorder.
View Article and Find Full Text PDFThe benefits of adult stem cells for repair of the heart have been attributed to the repertoire of salutary paracrine activities they appear to exert. We previously isolated human W8B2 cardiac stem cells (CSCs) and found they powerfully influence cardiomyocytes and endothelial cells to collectively promote cardiac repair and regeneration. Here, the complexity of the W8B2 CSC secretomes was characterised and examined in more detail.
View Article and Find Full Text PDFOcular neovascularization is a common pathological feature in diabetic retinopathy and neovascular age-related macular degeneration that can lead to severe vision loss. We evaluated the therapeutic efficacy of a novel endogenous inhibitor of angiogenesis, the calreticulin anti-angiogenic domain (CAD180), and its functional 112-residue fragment, CAD-like peptide 112 (CAD112), delivered using a self-complementary adeno-associated virus serotype 2 (scAAV2) in rodent models of oxygen-induced retinopathy and laser-induced choroidal neovascularization. The expression of CAD180 and CAD112 was elevated in human umbilical vein endothelial cells transduced with scAAV2-CAD180 or scAAV2-CAD112, respectively, and both inhibited angiogenic activity in vitro.
View Article and Find Full Text PDFDiabetic cardiomyopathy is a major contributor to the increasing burden of heart failure globally. Effective therapies remain elusive, in part due to the incomplete understanding of the mechanisms underlying diabetes-induced myocardial injury. The objective of this study was to assess the direct impact of insulin replacement on left ventricle structure and function in a rat model of diabetes.
View Article and Find Full Text PDFChoroidal neovascularization (CNV) is a common pathological feature in neovascular age-related macular degeneration, which is the leading cause of vision loss among elderly populations in developed countries. This study evaluated the effect of a novel endogenous inhibitor of angiogenesis, calreticulin anti-angiogenic domain (CAD), subconjunctivally delivered by an adenoviral vector (Ad-CAD) in a rat model of laser-induced CNV. CAD was expressed in Ad-CAD-infected cells and inhibited the angiogenic activity in human umbilical vein endothelial cells in vitro.
View Article and Find Full Text PDFDiabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is a sight-threatening disease characterized in the early stages by neuronal and vascular dysfunction in the retina, and later by neovascularization that further damages vision. A major contributor to the pathology is excess production of vascular endothelial growth factor (VEGF), a growth factor that induces formation of new blood vessels and increases permeability of existing vessels. Despite the recent availability of effective treatments for the disease, including laser photocoagulation and therapeutic VEGF antibodies, DR remains a significant cause of vision loss worldwide.
View Article and Find Full Text PDFMitochondria are morphologically dynamic organelles constantly undergoing processes of fission and fusion that maintain integrity and bioenergetics of the organelle: these processes are vital for cell survival. Disruption in the balance of mitochondrial fusion and fission is thought to play a role in several pathological conditions including ischemic heart disease. Proteins involved in regulating the processes of mitochondrial fusion and fission are therefore potential targets for pharmacological therapies.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)-dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis.
View Article and Find Full Text PDFAdult stem cells continue to promise opportunities to repair damaged cardiac tissue. However, precisely how adult stem cells accomplish cardiac repair, especially after ischemic damage, remains controversial. It has been postulated that the clinical benefit of adult stem cells for cardiovascular disease results from the release of cytokines and growth factors by the transplanted cells.
View Article and Find Full Text PDFHere, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens.
View Article and Find Full Text PDFCorneal neovascularization, the growth of new blood vessels in the cornea, is a leading cause of vision impairment after corneal injury. Neovascularization typically occurs in response to corneal injury such as that caused by infection, physical trauma, chemical burns or in the setting of corneal transplant rejection. The NADPH oxidase enzyme complex is involved in cell signalling for wound-healing angiogenesis, but its role in corneal neovascularization has not been studied.
View Article and Find Full Text PDFBackground. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes.
View Article and Find Full Text PDFSubconjunctival injection is a minimally invasive route for gene delivery to ocular tissues, but has traditionally been limited to use in the cornea. The accurate ocular distribution of virus has not, however, been previously investigated. Adenovirus is an attractive gene vector as it can deliver large genes and allow for short-term gene expression, but how safe it is when delivered via subconjunctival injection remains to be established.
View Article and Find Full Text PDFCurr Pharm Des
September 2016
Pathological angiogenesis in the retina is a leading cause of serious vision loss in potentially blinding eye diseases, including proliferative diabetic retinopathy, retinopathy of prematurity and the wet form of age-related macular degeneration. Hypoxia is thought to be the driver of pathological angiogenesis, and transcription factors such as hypoxia-inducible factor (HIF) and vascular endothelial growth factor (VEGF) are key mediators in these processes. Current treatments employ either laser photocoagulation or intravitreal injection of therapeutic antibodies for VEGF, in order to arrest the growth of leaky blood vessels in the avascular vitreous cavity and to restore visual acuity.
View Article and Find Full Text PDF