Publications by authors named "Gregory I Peterson"

A series of monodisperse cyclic and linear poly(d,l-lactide)s (-PLA and -PLA, respectively) were prepared with various degrees of polymerization (DP) using an iterative convergent synthesis approach. The absence of a molecular weight distribution provided us a chance to study their mechanochemical reactivity without obstructions arising from the size distribution. Additionally, we prepared - and -PLAs with identical DPs, which enabled us to attribute differences in scission rates to the cyclic polymer architecture alone.

View Article and Find Full Text PDF

Ruthenium-alkylidene initiated ring-opening metathesis polymerization has been realized under solid-state conditions by employing a mechanochemical ball milling method. This method promotes greenness and broadens the scope to include mechano-exclusive products. The carbene- and pyridine-based Grubbs 3-generation complex outperformed other catalysts and maintained similar mechanistic features of solution-phase reactions.

View Article and Find Full Text PDF

Cascade polymerizations recently gained significant attention due to their use of unique transformations, involving multiple bond making and/or breaking steps, when converting monomers to repeat units. However, designing complex cascade polymerizations which proceed in a controlled manner is very challenging. Various side reactions can hamper polymerization performance and the efficiency of the cascade.

View Article and Find Full Text PDF

Polymer architecture is an important factor in polymer mechanochemistry. In this Feature Article, we summarize recent developments in utilizing polymer architecture to modulate mechanochemical reactions within polymers, or more specifically, the location and rates of bond scission events that lead to polymer fragmentation or mechanophore activation. Various well-defined architectures have been explored, including those of cyclic, intramolecularly cross-linked, dendritic, star, bottlebrush, and dendronized polymers.

View Article and Find Full Text PDF

We explored the mechanochemical degradation of bottlebrush and dendronized polymers in solution (with ultrasonication, US) and solid states (with ball-mill grinding, BMG). Over 50 polymers were prepared with varying backbone length and arm architecture, composition, and size. With US, we found that bottlebrush and dendronized polymers exhibited consistent backbone scission behavior, which was related to their elongated conformations in solution.

View Article and Find Full Text PDF

Enyne monomers derived from D-xylose underwent living cascade polymerizations to prepare new polymers with a ring-opened sugar and degradable linkage incorporated into every repeat unit of the backbone. Polymerizations were well-controlled and had living character, which enabled the preparation of high molecular weight polymers with narrow molecular weight dispersity values and a block copolymer. By tuning the type of acid-sensitive linkage (hemi-aminal ether, acetal, or ether functional groups), we could change the degradation profile of the polymer and the identity of the resulting degradation products.

View Article and Find Full Text PDF

An unsaturated polymer's /-olefin content has a significant influence on its properties. For polymers obtained by ring-opening metathesis polymerization (ROMP), the /-olefin content can be tuned by using specific catalysts. However, -selective ROMP has suffered from narrow monomer scope and lack of control over the polymerization (giving polymers with broad molecular weight distributions and prohibiting the synthesis of block copolymers).

View Article and Find Full Text PDF

Traditionally, most polymerizations rely on simple reactions such as alkene addition, ring-opening, and condensation because they are robust, highly efficient, and selective. These reactions, however, generally only yield a single new C-C or C-O bond during each propagation step. In recent years, novel macromolecules have been prepared with propagation steps that involve cascade reactions, enabling various combinations of bond making and breaking steps to form more complex repeat units.

View Article and Find Full Text PDF

Monomers derived from glucose and galactose, which contain an endocyclic alkene (in the sugar ring) and a terminal alkyne, underwent a cascade polymerization to prepare new polymers with the ring-opened sugar incorporated into the polymer backbone. Polymerizations were well-controlled, as demonstrated by a linear increase in molecular weight with monomer-to-initiator ratio and generally narrow molecular weight dispersity values. The living nature of the polymerization was supported by the preparation of a block copolymer from two different sugar-based monomers.

View Article and Find Full Text PDF

Metathesis cyclopolymerization (CP) of α,ω-diynes is a powerful method to prepare functional polyacetylenes (PAs). PAs have long been studied due to their interesting electrical, optical, photonic, and magnetic properties which make them candidates for use in various advanced applications. Grubbs catalysts are widely used throughout synthetic chemistry, largely due to their accessibility, high reactivity, and tolerance to air, moisture, and many functional groups.

View Article and Find Full Text PDF

New polyphenylene-based dendronized polymers (denpols), exhibiting extended and rigid conformations, were prepared using ring-opening metathesis polymerization (ROMP). Their mechanochemical degradation was explored in ultrasound-induced elongational flow fields. Degradation rate constants were obtained for polyphenylene-based denpols, of varying generation, across a degree of polymerization (DP) range of ∼100-600.

View Article and Find Full Text PDF

Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications.

View Article and Find Full Text PDF

The thermal shape memory behavior of a series of α-amino acid-based poly(ester urea)s has been explored. We demonstrate that these materials exhibit excellent shape memory performance in dual- and triple-shape thermomechanical testing. Significant activation of chain mobility above the as well as a hydrogen bonding network provide the basis for shape transformations and recovery.

View Article and Find Full Text PDF

We describe an efficient method to produce objects comprising spatially controlled and graded cross-link densities using vat photopolymerization additive manufacturing (AM). Using a commercially available diacrylate-based photoresin, 3D printer, and digital light processing (DLP) projector, we projected grayscale images to print objects in which the varied light intensity was correlated to controlled cross-link densities and associated mechanical properties. Cylinder and bar test specimens were used to establish correlations between light intensities used for printing and cross-link density in the resulting specimens.

View Article and Find Full Text PDF

The competitive absorption of blood plasma components including fibrinogen (FG), bovine serum albumin (BSA), and platelet-rich plasma (PRP) on l-valine-based poly(ester urea) (PEU) surfaces were investigated. Using four different PEU polymers, possessing compositionally dependent trends in thermal, mechanical, and critical surface tension measurements, water uptake studies were carried out to determine in vitro behavior of the materials. Quartz crystal microbalance (QCM) measurements were used to quantify the adsorption characteristics of PRP onto PEU thin films by coating the surfaces initially with FG or BSA.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on the reversible hetero-Diels-Alder reaction involving 1,2-oxazines made from a peralkylcyclopentadiene and various nitrosocarbonyl dienophiles.
  • It highlights that different dienophiles can significantly change the dynamic properties of the oxazine products.
  • The study suggests potential uses in creating dynamic covalent materials or systems for delivering small molecules due to the reactions' reliability and sensitivity to temperature and moisture.
View Article and Find Full Text PDF

We describe the preparation and characterization of photo- and mechanochromic 3D-printed structures using a commercial fused filament fabrication printer. Three spiropyran-containing poly(ε-caprolactone) (PCL) polymers were each filamentized and used to print single- and multicomponent tensile testing specimens that would be difficult, if not impossible, to prepare using traditional manufacturing techniques. It was determined that the filament production and printing process did not degrade the spiropyran units or polymer chains and that the mechanical properties of the specimens prepared with the custom filament were in good agreement with those from commercial PCL filament.

View Article and Find Full Text PDF

The kinetics of mechanochemical chain scission of poly(phthalaldehyde) (PPA) are investigated. Ultrasound-induced cavitation is capable of causing chain scission in the PPA backbone that ultimately leads to rapid depolymerization of each resulting polymer fragment when above the polymer's ceiling temperature (Tc ). An interesting feature of the mechanochemical breakdown of PPA is that "half-chain" daughter fragments are not observed, since the depolymerization is rapid following chain scission.

View Article and Find Full Text PDF

The effect of star versus linear polymer architecture on the rates of mechanochemically induced bond scission has been explored. We determined rate constants for chain scission of parent linear and star polymers, from which daughter fragments were cleanly resolved. These studies confirm a mechanistic interpretation of star polymer chain scission that is governed by the spanning rather than total molecular weight.

View Article and Find Full Text PDF

Biological systems rely on recyclable materials resources such as amino acids, carbohydrates and nucleic acids. When biomaterials are damaged as a result of aging or stress, tissues undergo repair by a depolymerization-repolymerization sequence of remodelling. Integration of this concept into synthetic materials systems may lead to devices with extended lifetimes.

View Article and Find Full Text PDF