Publications by authors named "Gregory Hudalla"

Enzyme therapeutics are often compromised by poor accumulation within target tissues, necessitating high doses that can exacerbate off-target effects. We report an injectable supramolecular enzyme-peptide gel platform for prolonged local enzyme retention . The gel is based on CATCH(+/-) ( C o- A ssembling T ags based on CH arge-complementarity), cationic and anionic peptide pairs that form β-sheet fibrils upon mixing .

View Article and Find Full Text PDF

Directing immunometabolism presents new opportunities to modulate key cell types associated with the formation of foreign body response (FBR) capsule. Contrasting approaches directing immunometabolism are investigated to mitigate FBR: a broadly suppressive metabolic inhibitor (MI) cocktail comprised of 2-deoxyglucose (2-DG), metformin, and 6-diazo-5-oxo-l-norleucine (DON) with daily systemic dosing regimen, and local weekly injection of the more narrowly focused tryptophan catabolizing IDO-Gal3 fusion protein. Treatments significantly decrease FBR capsule formed around subcutaneously implanted cellulose disks.

View Article and Find Full Text PDF

Protein biotherapeutics typically require expensive cold-chain storage to maintain their fold and function. Packaging proteins in the dry state via lyophilization can reduce these cold-chain requirements. However, formulating proteins for lyophilization often requires extensive optimization of excipients that both maintain the protein folded state during freezing and drying (i.

View Article and Find Full Text PDF

Q11 peptide nanofibers are used as a biomaterial for applications such as antigen presentation and tissue engineering, yet detailed knowledge of molecular-level structure has not been reported. The Q11 peptide sequence was designed using heuristics-based patterning of hydrophobic and polar amino acids with oppositely charged amino acids placed at opposite ends of the sequence to promote antiparallel β-sheet formation. In this work, we employed solid-state nuclear magnetic resonance spectroscopy (NMR) to evaluate whether the molecular organization within Q11 self-assembled peptide nanofibers is consistent with the expectations of the peptide designers.

View Article and Find Full Text PDF

Co-assembling peptides can be crafted into supramolecular biomaterials for use in biotechnological applications, such as cell culture scaffolds, drug delivery, biosensors, and tissue engineering. Peptide co-assembly refers to the spontaneous organization of two different peptides into a supramolecular architecture. Here we use molecular dynamics simulations to quantify the effect of anionic amino acid type on co-assembly dynamics and nanofiber structure in binary CATCH(+/-) peptide systems.

View Article and Find Full Text PDF

Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary β-sheet-forming peptide pairs known as CATCH(X+/Y-) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D-) (Ac-DQDFDFDFDQD-Am) pair formed either β-sheet-rich microspheres or β-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y-) pairs.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is driven by low-grade inflammation, and controlling local inflammation may offer symptomatic relief. Here, we developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3), where IDO increases the production of local anti-inflammatory metabolites and Gal3 binds carbohydrates to extend IDO's joint residence time. In this study, we evaluated IDO-Gal3's ability to alter OA-associated inflammation and pain-related behaviors in a rat model of established knee OA.

View Article and Find Full Text PDF

: Controlling joint inflammation can improve osteoarthritis (OA) symptoms; however, current treatments often fail to provide long-term effects. We have developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3). IDO converts tryptophan to kynurenines, directing the local environment toward an anti-inflammatory state; Gal3 binds carbohydrates and extends IDO's joint residence time.

View Article and Find Full Text PDF

The treatment of chronic inflammation with systemically administered anti-inflammatory treatments is associated with moderate-to-severe side effects, and the efficacy of locally administered drugs is short-lived. Here we show that inflammation can be locally suppressed by a fusion protein of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO) and galectin-3 (Gal3). Gal3 anchors IDO to tissue, limiting the diffusion of IDO-Gal3 away from the injection site.

View Article and Find Full Text PDF

The COVID-19 pandemic has caused significant social and economic disruption across the globe. Cellular entry of SARS-CoV-2 into the human body is mediated via binding of the Receptor Binding Domain (RBD) on the viral Spike protein (SARS-CoV-2 RBD) to Angiotensin-Converting Enzyme 2 (ACE2) expressed on host cells. Molecules that can disrupt ACE2:RBD interactions are attractive therapeutic candidates to prevent virus entry into human cells.

View Article and Find Full Text PDF

In nature, the precise heterogeneous co-assembly of different protein domains gives rise to supramolecular machines that perform complex functions through the co-integrated activity of the individual protein subunits. A synthetic approach capable of mimicking this process would afford access to supramolecular machines with new or improved functional capabilities. Here we show that the distinct peptide strands of a heterotrimeric α-helical coiled-coil (i.

View Article and Find Full Text PDF

Altered extracellular matrix (ECM) production is a hallmark of many fibroproliferative diseases, including certain cancers. The high incidence of glycan-rich components within altered ECM makes the use of glycan-binding proteins such as Galectin-3 (G3) a promising therapeutic strategy. The complexity of ECM as a rich 3D network of proteins with varied glycosylation states makes it challenging to determine the retention of glycan-binding proteins in altered ECM environments.

View Article and Find Full Text PDF

Peptide coassembly, wherein at least two different peptides interact to form multicomponent nanostructures, is an attractive approach for generating functional biomaterials. Current efforts seek to design pairs of peptides, A and B, that form nanostructures (e.g.

View Article and Find Full Text PDF

Introduction: The promise of the natural immunoregulator, Galectin-1 (Gal1), as an immunomodulatory therapeutic is challenged by its unstable homodimeric conformation. Previously, a Gal1 homodimer stabilized via covalent poly(ethylene glycol) diacrylate (PEGDA) cross-linking demonstrated higher activity relative to the non-covalent homodimer.

Methods: Here, we report Gal1 homodimers formed using an alternative thiol-Michael addition linker chemistry.

View Article and Find Full Text PDF

Advances in experimental capabilities in the glycosciences offer expanding opportunities for discovery in the broad areas of immunology and microbiology. These two disciplines overlap when microbial infection stimulates host immune responses and glycan structures are central in the processes that occur during all such encounters. Microbial glycans mediate host-pathogen interactions by acting as surface receptors or ligands, functioning as virulence factors, impeding host immune responses, or playing other roles in the struggle between host and microbe.

View Article and Find Full Text PDF

Peptides’ hierarchical coassembly into nanostructures enables controllable fabrication of multicomponent biomaterials. In this work, we describe a computational and experimental approach to design pairs of charge-complementary peptides that selectively coassemble into β-sheet nanofibers when mixed together but remain unassembled when isolated separately. The key advance is a peptide coassembly design (PepCAD) algorithm that searches for pairs of coassembling peptides.

View Article and Find Full Text PDF

Owing to their biocompatibility and biodegradability, short synthetic peptides that self-assemble into elongated β-sheet fibers (i.e., peptide nanofibers) are widely used to create biomaterials for diverse medical and biotechnology applications.

View Article and Find Full Text PDF

. Chondroitinase ABC (ChABC) has emerged as a promising therapeutic agent for central nervous system regeneration. Despite multiple beneficial outcomes for regeneration, translation of this enzyme is challenged by poor pharmacokinetics, localization, and stability.

View Article and Find Full Text PDF

Galectin-3 (Gal3) exhibits dynamic oligomerization and promiscuous binding, which can lead to concomitant activation of synergistic, antagonistic, or noncooperative signaling pathways that alter cell behavior. Conferring signaling pathway selectivity through mutations in the Gal3-glycan binding interface is challenged by the abundance of common carbohydrate types found on many membrane glycoproteins. Here, employing alpha-helical coiled-coils as scaffolds to create synthetic Gal3 constructs with defined valency, we demonstrate that oligomerization can physically regulate extracellular signaling activity of Gal3.

View Article and Find Full Text PDF
Article Synopsis
  • Coassembling peptides provide more flexibility in designing biomaterials than self-assembling peptides, but understanding their structure formation via amino acid sequences is still limited.
  • Research on CATCH peptides has shown that they form nanofibers with varied structures rather than ideal arrangements, exhibiting patterns like in-register and out-of-register alignments.
  • By comparing CATCH and King-Webb peptide sequences, researchers aim to establish clearer connections between peptide sequence and the resulting nanostructure, enhancing future biomaterial design.
View Article and Find Full Text PDF

A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation.

View Article and Find Full Text PDF

Injectable hydrogels are attractive for therapeutic delivery because they can be locally administered through minimally-invasive routes. Charge-complementary peptide nanofibers provide hydrogels that are suitable for encapsulation of biotherapeutics, such as cells and proteins, because they assemble under physiological temperature, pH, and ionic strength. However, relationships between the sequences of charge-complementary peptides and the physical properties of the hydrogels that they form are not well understood.

View Article and Find Full Text PDF

Inflammatory caspase sensing of cytosolic lipopolysaccharide (LPS) triggers pyroptosis and the concurrent release of damage-associated molecular patterns (DAMPs). Collectively, DAMPs are key determinants that shape the aftermath of inflammatory cell death. However, the identity and function of the individual DAMPs released are poorly defined.

View Article and Find Full Text PDF