Copper phosphide (CuP) nanocrystals are promising materials for nanoplasmonics due to their substoichiometric composition, enabling the generation and stabilization of excess delocalized holes and leading to localized surface plasmon resonance (LSPR) absorption in the near-IR. We present three Cu-coupled redox chemistries that allow postsynthetic modulation of the delocalized hole concentrations and corresponding LSPR absorption in colloidal CuP nanocrystals. Changes in the structural, optical, and compositional properties are evaluated by powder X-ray diffraction, electronic absorption spectroscopy, P magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, and elemental analysis.
View Article and Find Full Text PDFSelective one-dimensional C-C spin-diffusion solid-state nuclear magnetic resonance (SSNMR) provides evidence for CH/π ring packing interactions between Pro and Tyr residues in C-enriched dragline silk. The secondary structure of Pro-containing motifs in dragline spider silks consistently points to an elastin-like type II β-turn conformation based on C chemical shift analysis. C-C spin diffusion measurements as a function of mixing times allow for the measurement of spatial proximity between the Pro and Tyr rings to be ∼0.
View Article and Find Full Text PDFFunctionalizing silica nanoparticles with a lipid bilayer shell is a common first step in fabricating drug delivery and biosensing devices that are further decorated with other biomolecules for a range of nanoscience applications and therapeutics. Although the molecular structure and dynamics of lipid bilayers have been thoroughly investigated on larger 100 nm-1 μm silica spheres where the lipid bilayer exhibits the typical L bilayer phase, the molecular organization of lipids assembled on mesoscale (4-100 nm diameter) nanoparticles is scarce. Here, DSC, TEM and H and P solid-state NMR are implemented to probe the organization of 1,2-dipalmitoyl-d--3-phosphocholine (DMPC-d) assembled on mesoscale silica nanoparticles illustrating a significant deviation from L bilayer structure due to the increasing curvature of mesoscale supports.
View Article and Find Full Text PDFProducing recombinant spider silk fibers that exhibit mechanical properties approaching native spider silk is highly dependent on the constitution of the spinning dope. Previously published work has shown that recombinant spider silk fibers spun from dopes with phosphate-induced pre-assembly (biomimetic dopes) display a toughness approaching native spider silks far exceeding the mechanical properties of fibers spun from dopes without pre-assembly (classical dopes). Dynamic light scattering experiments comparing the two dopes reveal that biomimetic dope displays a systematic increase in assembly size over time, while light microscopy indicates liquid-liquid-phase separation (LLPS) as evidenced by the formation of micron-scale liquid droplets.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a rare disorder that can cause lesions that develop into cysts, most commonly in the lung parenchyma and renal angiomyolipomas. We report a case of a young female with LAM who was admitted to the hospital for a COVID-19 infection, with the objective of discussing the management of LAM with concurrent COVID-19 infection. She ultimately showed overall clinical improvement after receiving dexamethasone and remdesivir, while holding her outpatient mammalian target of rapamycin (mTOR) inhibitor.
View Article and Find Full Text PDFBlack widow spider dragline silk is one of nature's high-performance biological polymers, exceeding the strength and toughness of most man-made materials including high tensile steel and Kevlar. Major ampullate (Ma), or dragline silk, is primarily comprised of two spidroin proteins (Sp) stored within the Ma gland. In the native gland environment, the MaSp1 and MaSp2 proteins self-associate to form hierarchical 200-300 nm superstructures despite being intrinsically disordered proteins (IDPs).
View Article and Find Full Text PDFTwo-dimensional (2D) and 3D through-space C-C homonuclear spin-diffusion techniques are powerful solid-state nuclear magnetic resonance (NMR) tools for extracting structural information from C-enriched biomolecules, but necessarily long acquisition times restrict their applications. In this work, we explore the broad utility and underutilized power of a chemical shift-selective one-dimensional (1D) version of a 2D C-C spin-diffusion solid-state NMR technique. The method, which is called 1D dipolar-assisted rotational resonance (DARR) difference, is applied to a variety of biomaterials including lignocellulosic plant cell walls, microcrystalline peptide fMLF, and black widow dragline spider silk.
View Article and Find Full Text PDFSilica nanoparticles can be designed to exhibit a diverse range of morphologies (e.g. non-porous, mesoporous), physical properties (e.
View Article and Find Full Text PDFA major challenge in liposomal research is to minimize the leakage of encapsulated cargo from either uncontrolled passive permeability across the liposomal membrane or upon fusion with other membranes. We previously showed that liposomes made from pure Archaea-inspired bipolar tetraether lipids exhibit exceptionally low permeability of encapsulated small molecules due to their capability to form more tightly packed membranes compared to typical monopolar lipids. Here, we demonstrate that liposomes made of synthetic bipolar tetraether lipids can also undergo membrane fusion, which is commonly accompanied by content leakage of liposomes when using typical bilayer-forming lipids.
View Article and Find Full Text PDFThe dynamics of guests in molecular encapsulation complexes have been studied extensively in solution, but the corresponding behavior of those guests when the capsules are present in the solid state is not as well understood. Here we report on comparative solution H and solid-state H NMR measurements of encapsulation complexes of fluorene(- ), fluoranthene(- ), and pyrene-(- ) in pyrogallol[4]arene hexamers assembled in the solid state by ball milling. In solution, the H spectra show that these rigid guests tumble and exchange positions quickly within the capsules' interiors, with the exception of pyrene, which has slower tumbling and positional exchange.
View Article and Find Full Text PDFMaintaining membrane integrity is a challenge at extreme temperatures. Biochemical synthesis of membrane-spanning lipids is one adaptation that organisms such as thermophilic archaea have evolved to meet this challenge and preserve vital cellular function at high temperatures. The molecular-level details of how these tethered lipids affect membrane dynamics and function, however, remain unclear.
View Article and Find Full Text PDFSpider venom contains a number of small peptides that can control the gating properties of a wide range of ion channels with high affinity and specificity. These ion channels are responsible for coordination and control of many bodily functions such as transducing signals into sensory functions, smooth muscle contractions as well as serving as sensors in volume regulation. Hence, these peptides have been the topic of many research efforts in hopes that they can be used as biomedical therapeutics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2018
Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable-properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2019
Silk proteins are biopolymers produced by spinning organisms that have been studied extensively for applications in materials engineering, regenerative medicine, and devices due to their high tensile strength and extensibility. This remarkable combination of mechanical properties arises from their unique semi-crystalline secondary structure and block copolymer features. The secondary structure of silks is highly sensitive to processing, and can be manipulated to achieve a wide array of material profiles.
View Article and Find Full Text PDFPyrogallol[4]arene hexamers are hydrogen-bonded molecular capsules of exceptional kinetic stability that can entrap small molecule guests indefinitely, without exchange, at ambient temperatures. Here, we report on the use of a ball mill to induce self-assembly of the capsule components and the guests in the solid state. Stoichiometric amounts of pyrogallol[4]arene and a guest, which can be an arene, alkane, amine, or carboxylic acid, were milled at 30 Hz for fixed durations, dissolved, and characterization by NMR.
View Article and Find Full Text PDFLiposomal drug-delivery systems have been used for delivery of drugs to targeted tissues while reducing unwanted side effects. DOXIL, for instance, is a liposomal formulation of the anticancer agent doxorubicin (DOX) that has been used to address problems associated with nonspecific toxicity of free DOX. However, while this liposomal formulation allows for a more-stable circulation of doxorubicin in the body compared to free drug, the efficacy for cancer therapy is reduced in comparison with systemic injections of free drug.
View Article and Find Full Text PDFIn this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.
View Article and Find Full Text PDFThis paper presents a new hybrid lipid that fuses the ideas of molecular tethering of lipid tails used by archaea and the integration of cholesterol groups used by eukaryotes, thereby leveraging two strategies employed by nature to increase lipid packing in membranes. Liposomes comprised of pure hybrid lipids exhibited a 5-30-fold decrease in membrane leakage of small ions and molecules compared to liposomes that used only one strategy (lipid tethering or cholesterol incorporation) to increase membrane integrity. Molecular dynamics simulations reveal that tethering of lipid tails and integration of cholesterol both reduce the disorder in lipid tails and time-dependent variance in area per lipid within a membrane, leading to tighter lipid packing.
View Article and Find Full Text PDFThe molecular interactions of silk materials plasticized using glycerol were studied, as these materials provide options for biodegradable and flexible protein-based systems. Plasticizer interactions with silk were analyzed by thermal, spectroscopic, and solid-state NMR analyses. Spectroscopic analysis implied that glycerol was hydrogen bonded to the peptide matrix, but may be displaced with polar solvents.
View Article and Find Full Text PDFSolid-state NMR and molecular dynamics (MD) simulations are presented to help elucidate the molecular secondary structure of poly(Gly-Gly-X), which is one of the most common structural repetitive motifs found in orb-weaving dragline spider silk proteins. The combination of NMR and computational experiments provides insight into the molecular secondary structure of poly(Gly-Gly-X) segments and provides further support that these regions are disordered and primarily non-β-sheet. Furthermore, the combination of NMR and MD simulations illustrate the possibility for several secondary structural elements in the poly(Gly-Gly-X) regions of dragline silks, including β-turns, 3-helicies, and coil structures with a negligible population of α-helix observed.
View Article and Find Full Text PDFThis paper examines the effects of four different polar headgroups on small-ion membrane permeability from liposomes comprised of Archaea-inspired glycerolmonoalkyl glycerol tetraether (GMGT) lipids. We found that the membrane-leakage rate across GMGT lipid membranes varied by a factor of ≤1.6 as a function of headgroup structure.
View Article and Find Full Text PDFAs ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids.
View Article and Find Full Text PDFExtremophile archaeal organisms overcome problems of membrane permeability by producing lipids with structural elements that putatively improve membrane integrity compared to lipids from other life forms. Herein, we describe a series of lipids that mimic some key structural features of archaeal lipids, such as: 1) single tethering of lipid tails to create fully transmembrane tetraether lipids and 2) the incorporation of small rings into these tethered segments. We found that membranes formed from pure tetraether lipids leaked small ions at a rate that was about two orders of magnitude slower than common bilayer-forming lipids.
View Article and Find Full Text PDFCharacterizing the nano-bio interface has been a long-standing endeavor in the quest for novel biosensors, biophotovoltaics, and biocompatible electronic devices. In this context, the present computational work on the interaction of two peptides, A6K (Ac-AAAAAAK-NH2) and A7 (Ac-AAAAAAA-NH2) with semiconducting TiO2 nanoparticles is an effort to understand the peptide-metal oxide nanointerface. These investigations were spurred by recent experimental observations that nanostructured semiconducting metal oxides templated with A6K peptides not only stabilize large proteins like photosystem-I (PS-I) but also exhibit enhanced charge-transfer characteristics.
View Article and Find Full Text PDF