Proc Natl Acad Sci U S A
November 2024
Neural manifolds summarize the intrinsic structure of the information encoded by a population of neurons. Advances in experimental techniques have made simultaneous recordings from multiple brain regions increasingly commonplace, raising the possibility of studying how these manifolds relate across populations. However, when the manifolds are nonlinear and possibly code for multiple unknown variables, it is challenging to extract robust and falsifiable information about their relationships.
View Article and Find Full Text PDFCycle representatives of persistent homology classes can be used to provide descriptions of topological features in data. However, the non-uniqueness of these representatives creates ambiguity and can lead to many different interpretations of the same set of classes. One approach to solving this problem is to optimize the choice of representative against some measure that is meaningful in the context of the data.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source, free Python package that provides computationally optimized solutions to key problems in advanced fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correlation (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of representational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic factor analysis (TFA), inverted encoding models (IEMs), an fMRI data simulator that uses noise characteristics from real data (fmrisim), and some emerging methods.
View Article and Find Full Text PDFIn recent years, persistent homology has become an attractive method for data analysis. It captures topological features, such as connected components, holes, and voids from point cloud data and summarizes the way in which these features appear and disappear in a filtration sequence. In this project, we focus on improving the performance of Eirene, a computational package for persistent homology.
View Article and Find Full Text PDFRecent fMRI research shows that perceptual and cognitive representations are instantiated in high-dimensional multivoxel patterns in the brain. However, the methods for detecting these representations are limited. Topological data analysis (TDA) is a new approach, based on the mathematical field of topology, that can detect unique types of geometric features in patterns of data.
View Article and Find Full Text PDF