Publications by authors named "Gregory G Oakley"

Cells respond to DNA double-strand breaks by initiating DSB repair and ensuring a cell cycle checkpoint. The primary responder to DSB repair is non-homologous end joining, which is an error-prone repair pathway. However, when DSBs are generated after DNA replication in the G2 phase of the cell cycle, a second DSB repair pathway, homologous recombination, can come into action.

View Article and Find Full Text PDF

Platinum-based chemotherapy is the standard first-line treatment for oral squamous cell carcinoma (OSCC) that is inoperable, recurrent, or metastatic. Platinum sensitivity is a major determinant of patient survival in advanced OSCC. Here, we investigated the involvement of MASTL, a cell cycle kinase that mediates ENSA/ARPP19 phosphorylation and PP2A/B55 inhibition, in OSCC therapy.

View Article and Find Full Text PDF

The G2/M checkpoint inhibits mitotic entry upon DNA damage, thereby preventing segregation of broken chromosomes and preserving genome stability. The tumor suppressor proteins BRCA1, PALB2 and BRCA2 constitute a BRCA1-PALB2-BRCA2 axis that is essential for homologous recombination (HR)-based DNA doublestrand break repair. Besides HR, BRCA1 has been implicated in both the initial activation and the maintenance of the G2/M checkpoint, while BRCA2 and PALB2 have been shown to be critical for its maintenance.

View Article and Find Full Text PDF

The eukaryotic ssDNA-binding protein, Replication protein A (RPA), was first discovered almost three decades ago. Since then, much progress has been made to elucidate the critical roles for RPA in DNA metabolic pathways that help promote genomic stability. The canonical RPA heterotrimer (RPA1-3) is an essential coordinator of DNA metabolism that interacts with ssDNA and numerous protein partners to coordinate its roles in DNA replication, repair, recombination and telomere maintenance.

View Article and Find Full Text PDF

The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55β in Xenopus egg extracts that are involved in metabolism, mitochondria function, molecular trafficking, cell division, cytoskeleton, DNA replication, DNA repair, and cell signaling.

View Article and Find Full Text PDF

Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA).

View Article and Find Full Text PDF

Replication protein A (RPA), essential for DNA replication, repair and DNA damage signalling, possesses six ssDNA-binding domains (DBDs), including DBD-F on the N-terminus of the largest subunit, RPA70. This domain functions as a binding site for p53 and other DNA damage and repair proteins that contain amphipathic alpha helical domains. Here, we demonstrate direct binding of both ssDNA and the transactivation domain 2 of p53 (p53TAD2) to DBD-F, as well as DBD-F-directed dsDNA strand separation by RPA, all of which are inhibited by fumaropimaric acid (FPA).

View Article and Find Full Text PDF

Activation of the cellular DNA damage response (DDR) is an important determinant of cell sensitivity to cisplatin and other chemotherapeutic drugs that eliminate tumor cells through induction of DNA damage. It is therefore important to investigate whether alterations of the DNA damage-signaling pathway confer chemoresistance in cancer cells and whether pharmacologic manipulation of the DDR pathway can resensitize these cells to cancer therapy. In a panel of oral/laryngeal squamous cell carcinoma (SCC) cell lines, we observed deficiencies in DNA damage signaling in correlation with cisplatin resistance, but not with DNA repair.

View Article and Find Full Text PDF

During palatogenesis, the palatal mesenchyme undergoes increased cell proliferation resulting in palatal growth, elevation and fusion of the two palatal shelves. Interestingly, the palatal mesenchyme expresses all three transforming growth factor (TGF) β isoforms (1, 2, and 3) throughout these steps of palatogenesis. However, the role of TGFβ in promoting proliferation of palatal mesenchymal cells has never been explored.

View Article and Find Full Text PDF

The pharmacological suppression of the DNA damage response and DNA repair can increase the therapeutic indices of conventional chemotherapeutics. Replication Protein A (RPA), the major single-stranded DNA binding protein in eukaryotes, is required for DNA replication, DNA repair, DNA recombination, and DNA damage response signaling. Through the use of high-throughput screening of 1500 compounds, we have identified a small molecule inhibitor, 15-carboxy-13-isopropylatis-13-ene-17,18-dioic acid (NSC15520), that inhibited both the binding of Rad9-GST and p53-GST fusion proteins to the RPA N-terminal DNA binding domain (DBD), interactions that are essential for robust DNA damage signaling.

View Article and Find Full Text PDF

Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype.

View Article and Find Full Text PDF

Background: Helicobacter hepaticus, the prototype for enterohepatic Helicobacter species, colonizes the lower intestinal and hepatobiliary tracts of mice and causes typhlocolitis, hepatitis, and hepatocellular carcinoma in susceptible mouse strains. Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus.

View Article and Find Full Text PDF

Accumulation of extracellular hyaluronan (HA) and its processing enzyme, the hyaluronidase Hyal1, predicts invasive, metastatic progression of human prostate cancer. To dissect the roles of hyaluronan synthases (HAS) and Hyal1 in tumorigenesis and metastasis, we selected nonmetastatic 22Rv1 prostate tumor cells that overexpress HAS2, HAS3, or Hyal1 individually, and compared these cells with co-transfectants expressing Hyal1 + HAS2 or Hyal1 + HAS3. Cells expressing only HAS were less tumorigenic than vector control transfectants on orthotopic injection into mice.

View Article and Find Full Text PDF

Post-translational phosphorylation of proteins provides a mechanism for cells to switch on or off many diverse processes, including responses to replication stress. Replication-stress-induced phosphorylation enables the rapid activation of numerous proteins involved in DNA replication, DNA repair and cell cycle checkpoints, including replication protein A (RPA). Here, we report that hydroxyurea (HU)-induced RPA phosphorylation requires both NBS1 (NBN) and NBS1 phosphorylation.

View Article and Find Full Text PDF

Signaling from arrested replication forks plays a role in maintaining genome stability. We have investigated this process in xeroderma pigmentosum variant cells that carry a mutation in the POLH gene and lack functional DNA polymerase eta (poleta). Poleta is required for error-free bypass of UV-induced cyclobutane pyrimidine dimers; in the absence of poleta in XPV cells, DNA replication is arrested at sites of UV-induced DNA damage, and mutagenic bypass of lesions is ultimately carried out by other, error-prone, DNA polymerases.

View Article and Find Full Text PDF

In response to replicative stress, cells relocate and activate DNA repair and cell cycle arrest proteins such as replication protein A (RPA, a three subunit protein complex required for DNA replication and DNA repair) and the MRN complex (consisting of Mre11, Rad50, and Nbs1; involved in DNA double-strand break repair). There is increasing evidence that both of these complexes play a central role in DNA damage recognition, activation of cell cycle checkpoints, and DNA repair pathways. Here we demonstrate that RPA and the MRN complex co-localize to discrete foci and interact in response to DNA replication fork blockage induced by hydroxyurea (HU) or ultraviolet light (UV).

View Article and Find Full Text PDF

The heterotrimeric DNA-binding protein, replication protein A (RPA), consists of 70-, 34-, and 14-kDa subunits and is involved in maintaining genomic stability by playing key roles in DNA replication, repair, and recombination. RPA participates in these processes through its interaction with other proteins and its strong affinity for single-stranded DNA (ssDNA). RPA-p34 is phosphorylated in a cell-cycle-dependent fashion primarily at Ser-29 and Ser-23, which are consensus sites for Cdc2 cyclin-dependent kinase.

View Article and Find Full Text PDF

NAD(P)H:quinone oxidoreductase (NQO1) catalyzes the two- or four-electron reduction of numerous endogenous and environmental quinones (e.g., the vitamin E alpha-tocopherol quinone, menadione, benzene quinones).

View Article and Find Full Text PDF