Programmed death (apoptosis) is turned on in damaged or unwanted cells to secure their clean and safe self-elimination. The initial apoptotic events are coordinated in mitochondria, whereby several proapoptotic factors, including cytochrome c, are released into the cytosol to trigger caspase cascades. The release mechanisms include interactions of B-cell/lymphoma 2 family proteins with a mitochondria-specific phospholipid, cardiolipin, to cause permeabilization of the outer mitochondrial membrane.
View Article and Find Full Text PDFIn summary, the redox conversions of MT cysteines are likely to be the principal mechanisms for regulation of metal binding and release by this protein. Oxidative and/or nitrosative challenges can serve to promote metal ion release from MT to render their delivery to specific target proteins. It is tempting to consider the potential roles of MTs as redox sensors because of their high sensitivity to cysteine modification, as well as their potential to amplify signals by releasing multiple metal ions.
View Article and Find Full Text PDF