Publications by authors named "Gregory Frierdich"

The expression of the CP4 EPSPS protein in genetically engineered (GE) soybean confers tolerance to the Roundup family of agricultural herbicides. This study evaluated the variability of CP4 EPSPS expression using an enzyme-linked immunosorbent assay in soybean tissues collected across diverse germplasm and 74 different environments in Argentina, Brazil and the USA. Evaluated material included single and combined (stacked) trait products with other GE traits in entries with cp4 epsps gene at one or two loci.

View Article and Find Full Text PDF

Genetically modified (GM) crops have been developed and commercialized that utilize double stranded RNAs (dsRNA) to suppress a target gene(s), producing virus resistance, nutritional and quality traits. MON 87411 is a GM maize variety that leverages dsRNAs to selectively control corn rootworm through production of a 240 base pair (bp) dsRNA fragment targeting for suppression the western corn rootworm (Diabrotica virgifera virgifera) Snf7 gene (DvSnf7). A bioinformatics assessment found that endogenous corn small RNAs matched ∼450 to 2300 unique RNA transcripts that likely code for proteins in rat, mouse, and human, demonstrating safe dsRNA consumption by mammals.

View Article and Find Full Text PDF

Many medial septal neurons of the basal forebrain are dependent on nerve growth factor (NGF) from the hippocampus for survival and maintenance of a cholinergic phenotype. When deprived of their source of NGF by axotomy, medial septal neuronal cell bodies atrophy and lose their cholinergic markers. This is similar to what is observed in the basal forebrain during Alzheimer's disease (AD).

View Article and Find Full Text PDF

Vascular inflammation was examined as a potential mechanism of aldosterone-mediated myocardial injury in uninephrectomized rats receiving 1% NaCl-0.3% KCl to drink for 1, 2, or 4 wk and 1) vehicle, 2) aldosterone infusion (0.75 microg/h), or 3) aldosterone infusion (0.

View Article and Find Full Text PDF

Heart failure is a complex multifactorial disease resulting in a myriad of progressive changes at the molecular, cellular, and physiological level. To better understand the mechanisms associated with the development of congestive heart failure, a comprehensive examination of the aging lean male spontaneously hypertensive, heart failure-prone rat (SHHF) was conducted. Myocardial function and structural integrity progressively diminished as evidenced by decreased ejection fraction and increased left ventricular volume measured using echocardiography.

View Article and Find Full Text PDF