Publications by authors named "Gregory Faye"

Sensory perception (e.g., vision) relies on a hierarchy of cortical areas, in which neural activity propagates in both directions, to convey information not only about sensory inputs but also about cognitive states, expectations and predictions.

View Article and Find Full Text PDF

We consider an epidemic model of SIR type set on a homogeneous tree and investigate the spreading properties of the epidemic as a function of the degree of the tree, the intrinsic basic reproduction number and the strength of the interactions between the populations of infected individuals at each node. When the degree is one, the homogeneous tree is nothing but the standard lattice on the integers and our model reduces to a SIR model with discrete diffusion for which the spreading properties are very similar to the continuous case. On the other hand, when the degree is larger than two, we observe some new features in the spreading properties.

View Article and Find Full Text PDF

We propose a new model that describes the dynamics of epidemic spreading on connected graphs. Our model consists in a PDE-ODE system where at each vertex of the graph we have a standard SIR model and connections between vertices are given by heat equations on the edges supplemented with Robin like boundary conditions at the vertices modeling exchanges between incident edges and the associated vertex. We describe the main properties of the system, and also derive the final total population of infected individuals.

View Article and Find Full Text PDF

The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability.

View Article and Find Full Text PDF

We study the neural field equations introduced by Chossat and Faugeras to model the representation and the processing of image edges and textures in the hypercolumns of the cortical area V1. The key entity, the structure tensor, intrinsically lives in a non-Euclidean, in effect hyperbolic, space. Its spatio-temporal behaviour is governed by nonlinear integro-differential equations defined on the Poincaré disc model of the two-dimensional hyperbolic space.

View Article and Find Full Text PDF