Development of the vertebrate embryo requires strict coordination of a highly complex series of signaling cascades, that drive cell proliferation, differentiation, migration, and the general morphogenetic program. Members of the Map kinase signaling pathway are repeatedly required throughout development to activate the downstream effectors, ERK, p38, and JNK. Regulation of these pathways occurs at many levels in the signaling cascade, with the Map3Ks playing an essential role in target selection.
View Article and Find Full Text PDFIntermediate filament (IF) cytoskeletal networks simultaneously support mechanical integrity and influence signal transduction pathways. Marked remodeling of the keratin IF network accompanies collective cellular morphogenetic movements that occur during early embryonic development in the frog While this reorganization of keratin is initiated by force transduction on cell-cell contacts mediated by C-cadherin, the mechanism by which keratin filament reorganization occurs remains poorly understood. In this work, we demonstrate that 14-3-3 proteins regulate keratin reorganization dynamics in embryonic mesendoderm cells from gastrula.
View Article and Find Full Text PDFThe mechanistic target of rapamycin kinase complex 1 (MTORC1) is a central cellular kinase that integrates major signaling pathways, allowing for regulation of anabolic and catabolic processes including macroautophagy/autophagy and lysosomal biogenesis. Essential to these processes is the regulatory activity of TFEB (transcription factor EB). In a regulatory feedback loop modulating transcriptional levels of RRAG/Rag GTPases, TFEB controls MTORC1 tethering to membranes and induction of anabolic processes upon nutrient replenishment.
View Article and Find Full Text PDFThe coordination of individual cell behaviors is a crucial step in the assembly and morphogenesis of tissues. mesendoderm cells migrate collectively along a fibronectin (FN) substrate at gastrulation, but how the adhesive and mechanical forces required for these movements are generated and transmitted is unclear. Traction force microscopy (TFM) was used to establish that traction stresses are limited primarily to leading edge cells in mesendoderm explants, and that these forces are balanced by intercellular stresses in follower rows.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2017
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity.
View Article and Find Full Text PDFThe molecular mechanisms leading to and responsible for age-related, sporadic Alzheimer's disease (AD) remain largely unknown. It is well documented that aging patients with elevated levels of the amino acid metabolite homocysteine (Hcy) are at high risk of developing AD. We investigated the impact of Hcy on molecular clearance pathways in mammalian cells, including in vitro cultured induced pluripotent stem cell-derived forebrain neurons and in vivo neurons in mouse brains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
The connexin 43 (Cx43) hemichannel (HC) in the mechanosensory osteocytes is a major portal for the release of factors responsible for the anabolic effects of mechanical loading on bone formation and remodeling. However, little is known about how the Cx43 molecule responds to mechanical stimulation leading to the opening of the HC. Here, we demonstrate that integrin α5β1 interacts directly with Cx43 and that this interaction is required for mechanical stimulation-induced opening of the Cx43 HC.
View Article and Find Full Text PDFCollective cell migration requires maintenance of adhesive contacts between adjacent cells, coordination of polarized cell protrusions, and generation of propulsive traction forces. We demonstrate that mechanical force applied locally to C-cadherins on single Xenopus mesendoderm cells is sufficient to induce polarized cell protrusion and persistent migration typical of individual cells within a collectively migrating tissue. Local tension on cadherin adhesions induces reorganization of the keratin intermediate filament network toward these stressed sites.
View Article and Find Full Text PDFCell-cell and cell-extracellular-matrix (cell-ECM) adhesions have much in common, including shared cytoskeletal linkages, signaling molecules and adaptor proteins that serve to regulate multiple cellular functions. The term 'adhesive crosstalk' is widely used to indicate the presumed functional communication between distinct adhesive specializations in the cell. However, this distinction is largely a simplification on the basis of the non-overlapping subcellular distribution of molecules that are involved in adhesion and adhesion-dependent signaling at points of cell-cell and cell-substrate contact.
View Article and Find Full Text PDFThis study demonstrates that proper spatiotemporal expression and the physical assembly state of fibronectin (FN) matrix play key roles in the regulation of morphogenetic cell movements in vivo. We examine the progressive assembly and 3D fibrillar organization of FN and its role in regulating cell and tissue movements in Xenopus embryos. Expression of the 70 kD N-terminal fragment of FN blocks FN fibril assembly at gastrulation but not initial FN binding to integrins at the cell surface.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2006
Purpose: To determine the mechanisms of action of phosphatidylinositol 3-kinase (PI3K) in lens cell differentiation and survival.
Methods: Primary quail lens cell cultures were treated at different stages of differentiation with the PI3K inhibitor LY294002, and expression of survival proteins and differentiation markers were determined by immunoblot analysis. The connection between PI3K regulation of lens differentiation and actin cytoskeleton reorganization was examined by fluorescent-phalloidin staining and Rac activity assay.
The actin cytoskeleton has the unique capability of integrating signaling and structural elements to regulate cell function. We have examined the ability of actin stress fiber disassembly to induce lens cell differentiation and the role of actin filaments in promoting lens cell survival. Three-dimensional mapping of basal actin filaments in the intact lens revealed that stress fibers were disassembled just as lens epithelial cells initiated their differentiation in vivo.
View Article and Find Full Text PDFThe mitochondrial cell death pathway is known for its role in signaling apoptosis. Here, we describe a novel function for the mitochondrial cell death pathway in signaling initiation of differentiation in the developing lens. Most remarkably, we induced lens cell differentiation by short-term exposure of lens epithelial cells to the apoptogen staurosporine.
View Article and Find Full Text PDF