Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful method for detection and quantification of nanoparticles. Unfortunately, the linear dynamic range of single particle analysis is hindered by "unruly" transient signals, momentary pulse pile-ups at the electron multiplier detector. This study seeks to extend the dynamic range of ICP-MS nanoparticle quantification via addition of a collision gas in the collision cell of the ICP-MS.
View Article and Find Full Text PDF(241)Am has been deposited using a novel technique that employs a commercial inductively coupled plasma mass spectrometer. This work presents results of high-resolution alpha spectrometry on the (241)Am samples using a small area passivated implanted planar silicon detector. We have also investigated the mass-based separation capability by developing a (238)Pu sample, present as a minor constituent in a (244)Pu standard, and performed subsequent radiometric counting.
View Article and Find Full Text PDFFor more than 20 years, countries and their agencies which monitor radionuclide discharge sites and storage facilities have relied on the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4355 Peruvian Soil. Its low fallout contamination makes it an ideal soil blank for measurements associated with terrestrial-pathway-to-man studies. Presently, SRM 4355 is out of stock, and a new batch of the Peruvian soil is currently under development as future NIST SRM 4355A.
View Article and Find Full Text PDF