Using the TOPOS program package, 26-atom nanoclusters of the γ-brass (Cu5Zn8) type (0@4@22 or 0@8@18) were found in 5918 crystal structures of cubic intermetallics. The nanocluster models were built for all the intermetallics using a recently developed algorithm implemented into TOPOS. The relations of the structures based on the 0@4@22 core are explored as a result of migration of atoms between different shells of the nanoclusters.
View Article and Find Full Text PDFA comprehensive study of the occurrence of two-shell clusters with the first shell as a Frank-Kasper polyhedron Z12, Z14, Z15, or Z16 (Frank-Kasper nanoclusters) is performed for 22,951 crystal structures of intermetallics containing only metal atoms. It is shown that besides the familiar Bergman and Mackay clusters, two more types of high-symmetrical icosahedron-based nanoclusters are rather frequent; they both have a 50-atom second shell. Moreover, two types of high-symmetrical Frank-Kasper nanoclusters with a Friauf-polyhedron (Z16) core are revealed; these nanoclusters have 44 and 58 atoms in the second shell.
View Article and Find Full Text PDFA novel method for the computational description of intermetallics as an assembly of nanoclusters was improved and applied to extremely complicated crystal structures of beta, beta'-Mg(2)Al(3) polymorphs. Using the TOPOS program package that implements the method, we separated two types of two-shell primary nanoclusters A, A1, A2, and B consisting of 57-63 atoms that completely compose the structures of the polymorphs. The nanocluster model interprets structural disordering in beta-Mg(2)Al(3): the disordered atoms form the inner shell of the nanocluster A, while the outer shells of all nanoclusters are preserved.
View Article and Find Full Text PDFIn terms of the Voronoi-Dirichlet partition of the crystal space, definitions are given for such concepts as ;void', ;channel' and ;migration path' for inorganic structures with three-dimensional networks of chemical bonds. A number of criteria are proposed for selecting significant voids and migration channels for alkali cations Li+-Cs+ based on the average characteristics of the Voronoi-Dirichlet polyhedra for alkali metals in oxygen-containing compounds. A general algorithm to analyze the voids in crystal structures has been developed and implemented in the computer package TOPOS.
View Article and Find Full Text PDF