Burkholderia are highly evolved Gram-negative bacteria that primarily infect solipeds but are transmitted to humans by ingestion and cutaneous or aerosol exposures. Heightened concern over human infections of Burkholderia mallei and the very closely related species B. pseudomallei is due to the pathogens' proven effectiveness as bioweapons, and to the increased potential for natural opportunistic infections in the growing diabetic and immuno-compromised populations.
View Article and Find Full Text PDFRapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei).
View Article and Find Full Text PDFPatients with cystic fibrosis (CF) are susceptible to chronic respiratory infections with a number of bacterial pathogens. Among them, the Burkholderia cepacia complex (Bcc) bacteria, consisting of nine related species, have emerged as problematic CF pathogens due to their antibiotic resistance, incidence of nosocomial infection, and person-to-person transmission. Bcc organisms present the clinical microbiologist with a diagnostic dilemma due to the lack of phenotypic biochemical or growth-related characterization tests that reliably distinguish among these organisms.
View Article and Find Full Text PDFand are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these species. In this study, we aimed to identify protective proteins against these pathogens.
View Article and Find Full Text PDFBackground: Burkholderia mallei is a zoonotic Gram negative bacterium which primarily infects solipeds but can cause lethal disease in humans if left untreated. The effect of two antibiotics with different modes of action on Burkholderia mallei strain ATCC23344 was investigated by using in vitro and in vivo studies.
Results: Determination of minimal inhibitory concentrations (MICs) in vitro was done by the agar diffusion method and the dilution method.
Burkholderia mallei is a facultative intracellular pathogen that survives and replicates in phagocytic cell lines. The bacterial burden recovered from naïve BALB/c mice infected by intranasal delivery indicated that B. mallei persists in the lower respiratory system.
View Article and Find Full Text PDFChlamydia trachomatis (CT) is the most prevalent sexually transmitted bacterial pathogen worldwide and causes severe reproductive tract infections. Currently, nucleic acid amplification tests (NAATs) are the gold standard for clinical diagnosis, but most NAATs are labor intensive and limited to specific CT serovars. We developed and validated a quantitative polymerase chain reaction (qPCR) assay that reproducibly detected CT serovars D, E, F, Ia, and Chlamydia muridarum over a linear range of 2 log(10) to 10 log(10) genomes with low coefficients of variation from both experimental and human urine samples.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
December 2008
We report the successful purification of lipopolysaccharide (LPS) from Burkholderia thailandensis, a Gram-negative bacterium, closely related to the highly pathogenic organisms B. pseudomallei and B. mallei.
View Article and Find Full Text PDFBurkholderia mallei, the aetiological agent of glanders disease, is a Gram-negative facultative intracellular bacterium. Despite numerous studies, the detailed mechanism of its pathogenesis is almost unknown. The presence of a type III secretion system (TTSS) is one of the known mechanisms associated with virulence.
View Article and Find Full Text PDFAdherence to epithelial cells by specific adhesins is a characteristic of Shiga toxin-producing Escherichia coli (STEC) strains. The eae-encoded protein intimin is the main adhesin implicated in intestinal colonization in vivo. We recently showed that STEC strains isolated in Chile displayed a wide variety of adhesins; here we demonstrate that some of these STEC strains are eae-negative and still adhere to epithelial cells at a level 100-fold higher than enterohaemorrhagic E.
View Article and Find Full Text PDFBackground: We performed initial cell, cytokine and complement depletion studies to investigate the possible role of these effectors in response to vaccination with heat-killed Burkholderia mallei in a susceptible BALB/c mouse model of infection.
Results: While protection with heat-killed bacilli did not result in sterilizing immunity, limited protection was afforded against an otherwise lethal infection and provided insight into potential host protective mechanisms. Our results demonstrated that mice depleted of either B cells, TNF-alpha or IFN-gamma exhibited decreased survival rates, indicating a role for these effectors in obtaining partial protection from a lethal challenge by the intraperitoneal route.
Burkholderia mallei, the etiologic agent of the disease known as glanders, is primarily a disease affecting horses and is transmitted to humans by direct contact with infected animals. The use of B. mallei as a biological weapon has been reported and currently, there is no vaccine available for either humans or animals.
View Article and Find Full Text PDF