Publications by authors named "Gregory C Patton"

Loop-mediated isothermal amplification (LAMP) is a versatile technique for detection of target DNA and RNA, enabling rapid molecular diagnostic assays with minimal equipment. The global SARS-CoV-2 pandemic has presented an urgent need for new and better diagnostic methods, with colorimetric LAMP utilized in numerous studies for SARS-CoV-2 detection. However, the sensitivity of colorimetric LAMP in early reports has been below that of the standard RT-qPCR tests, and we sought to improve performance.

View Article and Find Full Text PDF

The remarkable power and specificity of enzyme catalysis rely on the dynamic alignment of the enzyme, substrates, and cofactors, yet the role of dynamics has usually been approached from the perspective of the protein. We have been using an underappreciated NMR technique, subtesla high-resolution field cycling P NMR relaxometry, to investigate the dynamics of the enzyme-bound substrates and cofactor on guanosine-5'-monophosphate reductase (GMPR). GMPR forms two dead end, yet catalytically competent, complexes that mimic distinct steps in the catalytic cycle: E·IMP·NADP undergoes a partial hydride transfer reaction, while E·GMP·NADP undergoes a partial deamination reaction.

View Article and Find Full Text PDF

Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water.

View Article and Find Full Text PDF

Lantibiotics are post-translationally modified peptide antimicrobial agents that are synthesized with an N-terminal leader sequence and a C-terminal propeptide. Their maturation involves enzymatic dehydration of Ser and Thr residues in the precursor peptide to generate unsaturated amino acids, which react intramolecularly with nearby cysteines to form cyclic thioethers termed lanthionines and methyllanthionines. The role of the leader peptide in lantibiotic biosynthesis has been subject to much speculation.

View Article and Find Full Text PDF

Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics. The modifications involve dehydration of Ser and Thr residues to generate dehydroalanines and dehydrobutyrines, followed by intramolecular attack of cysteines onto the newly formed dehydro amino acids to produce cyclic thioethers. LctM performs both processes during the biosynthesis of lacticin 481.

View Article and Find Full Text PDF

Lantibiotics are peptide antimicrobials containing the thioether-bridged amino acids lanthionine (Lan) and methyllanthionine (MeLan) and often the dehydrated residues dehydroalanine (Dha) and dehydrobutyrine (Dhb). While biologically advantageous, the incorporation of these residues into peptides is synthetically daunting, and their production in vivo is limited to peptides containing proteinogenic amino acids. The lacticin 481 synthetase LctM offers versatile control over the installation of dehydro amino acids and thioether rings into peptides.

View Article and Find Full Text PDF

Lantibiotics are a unique class of peptide antibiotics. Recent studies of the proteins involved in the elaborate post-translational modifications of lantibiotics have revealed that these enzymes have relaxed substrate specificity. These modifications include the dehydration of serine and threonine residues followed by the intramolecular addition of cysteine thiols to the unsaturated amino acids to create an intricate polycyclic peptide.

View Article and Find Full Text PDF