Alcohol Clin Exp Res (Hoboken)
August 2024
Background: Intermittent access to ethanol drives persistent escalation of intake and rapid transition from moderate to compulsive-like drinking. Intermittent ethanol drinking may facilitate escalation of intake in part by altering aversion-sensitive neural substrates, such as the insular cortex (IC), thus driving greater approach toward stimuli previously treated as aversive.
Methods: We conducted a series of experiments in rats to examine behavioral and neural responses associated with escalation of ethanol intake.
Rationale: Nicotine promotes alcohol intake through pharmacological and behavioral interactions. As an example of the latter, nicotine can facilitate approach toward food- and alcohol-associated stimuli ("sign-tracking") in lever-Pavlovian conditioned approach (PavCA) paradigms. However, we recently reported that nicotine can also enhance approach toward locations of reward delivery ("goal-tracking") triggered by ethanol-predictive stimuli when the location of ethanol delivery is non-static (i.
View Article and Find Full Text PDFOutbred rats differ in their preference for the artificial sweetener sucralose. Psychophysical assessments have shown that the taste of sucralose is differentially generalized to either sucrose or a sucrose-quinine (QHCl) mixture in sucralose preferers (SP) and sucralose avoiders (SA), respectively. It remains to be determined if these differences in the psychophysical assessment of the taste of sucralose are due to an insensitivity to any bitter-like taste component of sucralose in SP or reduced sensitivity to a sweet-like component in SA that may mask any putative aversive side-taste in SP.
View Article and Find Full Text PDFHabitual use of nicotine containing products increases propensity to misuse prescription opioids and its prevalence is substantially increased in individuals currently involved in opioid-treatment programs. Nicotine enhances self-administration of many classes of drugs in rodents, though evidence for direct effects on opioids is lacking. We sought to measure the effects of nicotine pretreatment on the reinforcing efficacy of opioids in both self-administration and contextual conditioning paradigms.
View Article and Find Full Text PDFTaste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami.
View Article and Find Full Text PDFBackground: Nicotine and alcohol use are highly comorbid. Modulation of drug-paired extrinsic and intrinsic cues likely plays a role in this interaction, as cues can acquire motivational properties and augment drug seeking. The motivational properties of cues can be measured through Pavlovian conditioning paradigms, in which cues either elicit approach following pairing with the reinforcing properties of alcohol or elicit avoidance following pairing with the aversive consequences of alcohol.
View Article and Find Full Text PDFThe conditioned taste aversion (CTA) induced by ethanol is a key factor limiting ethanol intake. Nicotine, a drug co-consumed with ethanol, may decrease this aversion by modulating the unconditioned effects of ethanol or by disrupting the association between ethanol and its associated cues. This study analyzed ethanol-induced CTA and conditioned place aversion (CPA) in Long-Evans rats with subchronic exposure to nicotine.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2018
The idea that gut-derived satiation signals influence food reward has recently gained traction, but this hypothesis is largely based on studies focused on neural circuitry, not the peripherally released signals. Here, we directly tested the hypothesis that intragastric (IG) nutrient infusion can suppress motivation for food. In a series of experiments, IG sucrose infusion (15 kcal) significantly and reliably reduced operant responding for a sucrose reward on a progressive ratio (PR) schedule.
View Article and Find Full Text PDFBackground: Aversion to the orosensory properties of concentrated ethanol (EtOH) solutions is often cited as a primary barrier to initiation of drinking and may contribute to abstention. These aversive properties include gustatory processes which encompass both bitter-like taste qualities and trigeminal-mediated irritation. Chronic intermittent EtOH access (CIA) results in substantial and persistent increases in EtOH consumption, but the degree to which this facilitation involves sensory responding to EtOH and other bitter stimuli is currently undetermined.
View Article and Find Full Text PDFSeveral methods exist for reliably determining the motivational valence of a taste stimulus in animals, but few to determine its perceptual quality independent of its apparent affective properties. Individual differences in taste preference and acceptability could result from variance in the perceptual qualities of the stimulus leading to different hedonic evaluations. Alternatively, taste perception might be identical across subjects, but the processing of the sensory signals in reward circuits could differ.
View Article and Find Full Text PDFRats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent "bitter" side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl).
View Article and Find Full Text PDFFemale Sprague-Dawley rats display considerable variability in their preference for the artificial sweetener sucralose over water. While some rats can be classified as sucralose preferrers (SP), as they prefer sucralose across a broad range of concentrations, others can be classified as sucralose avoiders (SA), as they avoid sucralose at concentrations above 0.1 g/L.
View Article and Find Full Text PDF