Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[-]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[-] coinfected; and G[+] coinfected.
View Article and Find Full Text PDFIn holoendemic Plasmodium falciparum transmission regions, malarial anemia is a leading cause of childhood morbidity and mortality. Identifying biomarkers of malaria disease severity is important for identifying at-risk groups and for improved understanding of the molecular pathways that influence clinical outcomes. We have previously shown that decreased cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2) levels are associated with enhanced clinical severity in cerebral malaria, malarial anemia, and malaria during pregnancy.
View Article and Find Full Text PDFIn holoendemic Plasmodium falciparum transmission areas, severe malaria primarily occurs in children aged <48 months and manifests as severe malarial anemia [SMA; hemoglobin (Hb) < 6.0 g/dL]. Induction of high levels of prostaglandin-E(2) (PGE(2)) through inducible cyclooxygenase-2 (COX-2) is an important host-defense mechanism against invading pathogens.
View Article and Find Full Text PDFAnemia is the primary hematological manifestation of both Plasmodium falciparum malaria and HIV-1 in pediatric populations in sub-Saharan Africa. We have previously shown that HIV-1 positive and exposed children have greater risk of developing severe anemia (hemoglobin, Hb <6.0 g dL⁻¹) during acute malaria.
View Article and Find Full Text PDFSevere malarial anemia (SMA) is a leading cause of pediatric morbidity and mortality in holoendemic Plasmodium falciparum transmission areas. Although dysregulation in cytokine production is an important etiology of SMA, the role of IFN-α in SMA has not been reported. As such, we investigated the relationship between IFN-α promoter polymorphisms [i.
View Article and Find Full Text PDFGreater than 80% of malaria-related mortality occurs in sub-Saharan Africa due to infections with Plasmodium falciparum. The majority of P. falciparum-related mortality occurs in immune-naïve infants and young children, accounting for 18% of all deaths before five years of age.
View Article and Find Full Text PDFSevere malarial anemia (SMA) is a leading cause of morbidity and mortality in children residing in regions where Plasmodium falciparum transmission is holoendemic. Although largely unexplored in children with SMA, interleukin-18 (IL-18) is important for regulating innate and acquired immunity in inflammatory and infectious diseases. As such, we selected two functional single-nucleotide polymorphisms (SNPs) in the IL-18 promoter (-137G→C [rs187238] and -607C→A [rs1946518]) whose haplotypes encompass significant genetic variation due to the presence of strong linkage disequilibrium among these variants.
View Article and Find Full Text PDFAreas where Plasmodium falciparum transmission is holoendemic are characterized by high rates of pediatric severe malarial anemia (SMA) and associated mortality. Although the etiology of SMA is complex and multifactorial, perturbations in inflammatory mediator production play an important role in the pathogenic process. As such, the current study focused on identification of inflammatory biomarkers in children with malarial anemia.
View Article and Find Full Text PDFBackground: Plasmodium falciparum malaria remains a leading cause of morbidity and mortality among African children. Innate immunity provides the first line of defence against P. falciparum infections, particularly in young children that lack naturally-acquired malarial immunity, such as the population examined here.
View Article and Find Full Text PDFDevelopment of protective immunity against Plasmodium falciparum is partially mediated through binding of malaria-specific IgG to Fc gamma (γ) receptors. Variations in human FcγRIIA-H/R-131 and FcγRIIIB-NA1/NA2 affect differential binding of IgG sub-classes. Since variability in FcγR may play an important role in severe malarial anemia (SMA) pathogenesis by mediating phagocytosis of red blood cells and triggering cytokine production, the relationship between FcγRIIA-H/R131 and FcγRIIIB-NA1/NA2 haplotypes and susceptibility to SMA (Hb < 6.
View Article and Find Full Text PDFSevere malarial anaemia (SMA) is a common complication of Plasmodium falciparum infections, resulting in mortality rates that may exceed 30% in paediatric populations residing in holoendemic transmission areas. One strategy for reducing the morbidity and mortality associated with SMA is to identify clinical predictors that can be readily recognized by caregivers for prompt therapeutic interventions. To determine clinical predictors of SMA, Kenyan children (3-36 months, n = 671) presenting with acute illness at a rural hospital in Siaya District were recruited.
View Article and Find Full Text PDFMalaria and HIV-1 are coendemic in many developing countries, with anemia being the most common pediatric hematological manifestation of each disease. Anemia is also one of the primary causes of mortality in children monoinfected with either malaria or HIV-1. Although our previous results showed HIV-1(+) children with acute Plasmodium falciparum malaria [Pf(+)] have more profound anemia, potential causes of severe anemia in coinfected children remain unknown.
View Article and Find Full Text PDFPlasmodium falciparum malaria is a leading global cause of infectious disease burden. In areas in which P. falciparum transmission is holoendemic, such as western Kenya, severe malarial anemia (SMA) results in high rates of pediatric morbidity and mortality.
View Article and Find Full Text PDFBackground: Severe malarial anemia (SMA) resulting from Plasmodium falciparum infection is one of the leading causes of childhood mortality in sub-Saharan Africa. The innate immune mediator macrophage migration inhibitory factor (MIF) plays a critical role in the pathogenesis of SMA.
Methods: To investigate the influence of MIF genetic variation on susceptibility to SMA, haplotypes of the MIF -173G/C and -794CATT5-8 polymorphisms were examined in a cohort of Kenyan children.
In areas of holoendemic Plasmodium falciparum transmission, severe malarial anemia (SMA) is a leading cause of pediatric morbidity and mortality. Although many soluble mediators regulate erythropoiesis, it is unclear how these factors contribute to development of SMA. Investigation of novel genes dysregulated in response to malarial pigment (hemozoin [PfHz]) revealed that stem cell growth factor (SCGF; also called C-type lectin domain family member 11A [CLEC11A]), a hematopoietic growth factor important for development of erythroid and myeloid progenitors, was one of the most differentially expressed genes.
View Article and Find Full Text PDFRegulated upon activation, normal T-cell expressed, and secreted (RANTES, CCL-5) is an important immunoregulatory mediator that is suppressed in children with malarial anemia (MA). Although pro-inflammatory (e.g.
View Article and Find Full Text PDFPlasmodium falciparum malaria is one of the leading global causes of morbidity and mortality with African children bearing the highest disease burden. Among the various severe disease sequelae common to falciparum malaria, severe malarial anemia (SMA) in pediatric populations accounts for the greatest degree of mortality. Although the patho-physiological basis of SMA remains unclear, dysregulation in inflammatory mediators, such as interleukin (IL)-10, appear to play an important role in determining disease outcomes.
View Article and Find Full Text PDFInterleukin (IL)-1beta is a cytokine released as part of the innate immune response to Plasmodium falciparum. Because the role played by IL-1beta polymorphic variability in conditioning the immunopathogenesis of severe malarial anemia (SMA) remains undefined, relationships between IL-1beta promoter variants (-31C/T and -511A/G), SMA (hemoglobin [Hb] level <6.0 g/dL), and circulating IL-1beta levels were investigated in children with parasitemia (n= 566) from western Kenya.
View Article and Find Full Text PDFSevere malarial anemia (SMA), caused by Plasmodium falciparum infections, is one of the leading causes of childhood mortality in sub-Saharan Africa. Although the molecular determinants of SMA are largely undefined, dysregulation in host-derived inflammatory mediators influences disease severity. Macrophage migration inhibitory factor (MIF) is an important regulator of innate inflammatory responses that has recently been shown to suppress erythropoiesis and promote pathogenesis of SMA in murine models.
View Article and Find Full Text PDFCytokines and effector molecules are important immunoregulatory molecules in human malaria. Tumor necrosis factor (TNF)-alpha limits malaria parasitemia but also promotes pathogenesis at high concentrations, whereas prostaglandin E2 (PGE2) inhibits TNF-alpha production and is reduced in childhood malaria, at least in part, through suppression of cyclooxygenase (COX)-2 following the ingestion of Plasmodium falciparum hemozoin (pfHz; malarial pigment) by peripheral blood mononuclear cells (PBMCs). Although molecular interactions between TNF-alpha and PGE2 are largely unexplored in human malaria, results presented here show that pfHz-induced suppression of PBMC COX-2 gene products induces overproduction of TNF-alpha.
View Article and Find Full Text PDF