Publications by authors named "Gregory Brunette"

Genomic characterization has revealed widespread structural complexity in cancer karyotypes, however shotgun sequencing cannot resolve genomic rearrangements with chromosome-length continuity. Here, we describe a two-tiered approach to determine the segmental composition of rearranged chromosomes with haplotype resolution. First, we present , a new method for robust determination of chromosomal haplotypes using cancer Hi-C data.

View Article and Find Full Text PDF

The progression of precancerous lesions to malignancy is often accompanied by increasing complexity of chromosomal alterations but how these alterations arise is poorly understood. Here we perform haplotype-specific analysis of chromosomal copy-number evolution in the progression of Barrett's esophagus (BE) to esophageal adenocarcinoma (EAC) on multiregional whole-genome sequencing data of BE with dysplasia and microscopic EAC foci. We identify distinct patterns of copy-number evolution indicating multigenerational chromosomal instability that is initiated by cell division errors but propagated only after p53 loss.

View Article and Find Full Text PDF
Article Synopsis
  • Transcriptional differences in cancer cells are influenced by changes in the epigenetic state of chromatin, impacting tumor evolution and drug resistance.
  • Micronuclei and chromosome bridges, common in cancer, can lead to lasting reductions in gene expression and change how genes are regulated even after returning to normal cells.
  • These changes may occur due to long-lasting DNA damage, linking epigenetic shifts in gene expression to chromosomal instability and issues in nuclear structure.
View Article and Find Full Text PDF

Haplotype phase represents the collective genetic variation between homologous chromosomes and is an essential feature of non-haploid genomes. Here we describe a computational strategy to reliably determine complete whole-chromosome haplotypes using a combination of bulk long-range sequencing and Hi-C sequencing. We demonstrate that this strategy can resolve the haplotypes of parental chromosomes in diploid human genomes with high precision (>99%) and completeness (>98%) and assemble the syntenic structure of rearranged chromosomes in aneuploid cancer genomes at base pair level resolution.

View Article and Find Full Text PDF

Homologous recombination (HR) mediates the error-free repair of DNA double-strand breaks to maintain genomic stability. Here we characterize C17orf53/MCM8IP, an OB-fold containing protein that binds ssDNA, as a DNA repair factor involved in HR. MCM8IP-deficient cells exhibit HR defects, especially in long-tract gene conversion, occurring downstream of RAD51 loading, consistent with a role for MCM8IP in HR-dependent DNA synthesis.

View Article and Find Full Text PDF

RAD51 plays a central role in homologous recombination during double-strand break repair and in replication fork dynamics. Misregulation of RAD51 is associated with genetic instability and cancer. RAD51 is regulated by many accessory proteins including the highly conserved Shu complex.

View Article and Find Full Text PDF

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells.

View Article and Find Full Text PDF

DNA repair is critical for genome stability and is maintained through conserved pathways. Traditional genome-wide mammalian screens are both expensive and laborious. However, computational approaches circumvent these limitations and are a powerful tool to identify new DNA repair factors.

View Article and Find Full Text PDF

High-grade epithelial ovarian carcinomas containing mutated or () homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in , or was identified.

View Article and Find Full Text PDF