Background: The lack of murine glioblastoma models that mimic the immunobiology of human disease has impeded basic and translational immunology research. We, therefore, developed murine glioblastoma stem cell lines derived from Nestin-CreERT2QkL/L; Trp53L/L; PtenL/L (QPP) mice driven by clinically relevant genetic mutations common in human glioblastoma. This study aims to determine the immune sensitivities of these QPP lines in immunocompetent hosts and their underlying mechanisms.
View Article and Find Full Text PDFAnti-angiogenesis therapy has shown clinical benefit in patients with high-grade serous ovarian cancer (HGSC), but adaptive resistance rapidly emerges. Thus, approaches to overcome such resistance are needed. We developed the setting of adaptive resistance to anti-VEGF therapy, and performed a series of experiments in both immune competent and nude mouse models.
View Article and Find Full Text PDFAdoptive cell therapy using endogenous T cells involves the ex vivo isolation and expansion of antigen-specific T cells from the peripheral blood and is uniquely suited for validating and translating antigen discovery. Endogenous T-cell therapy does not require accessible tumor as a source of infiltrating T cells and is free of regulatory and logistical constraints associated with engineering T cells. Candidate epitope peptides identified through antigen discovery may be rapidly implemented as targets in clinical trials of endogenous T-cell therapy and even incorporated as an "ad hoc" approach to personalized treatment when autologous tumor is available.
View Article and Find Full Text PDFCancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression.
View Article and Find Full Text PDFWe investigated the antitumor effect of survivin DNA vaccine in murine pancreatic and lymphoma models, and if xenogenic survivin can generate stronger immune response. We found that mice vaccinated with either human or mouse survivin DNA have significantly slower tumor growth and longer survival than those vaccinated with vector DNA. There was no significant difference between groups that received human and mouse survivin DNA.
View Article and Find Full Text PDF